• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Correlation value determined to increase Salmonella prediction success of deep neural network for agricultural waters

Thumbnail

View/Open

Full Text / Tam Metin (1.220Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Buyrukoğlu, Selim
Yılmaz, Yıldıran
Topalcengiz, Zeynal

Metadata

Show full item record

Citation

Buyrukoğlu, S., Yılmaz, Y., & Topalcengiz, Z. (2022). Correlation value determined to increase Salmonella prediction success of deep neural network for agricultural waters. Environmental monitoring and assessment, 194(5), 373. https://doi.org/10.1007/s10661-022-10050-7

Abstract

The use of computer-based tools has been becoming popular in the field of produce safety. Various algorithms have been applied to predict the population and presence of indicator microorganisms and pathogens in agricultural water sources. The purpose of this study is to improve the Salmonella prediction success of deep feed-forward neural network (DFNN) in agricultural surface waters with a determined correlation value based on selected features. Datasets were collected from six agricultural ponds in Central Florida. The most successful physicochemical and environmental features were selected by the gain ratio for the prediction of generic Escherichia coli population with machine learning algorithms (decision tree, random forest, support vector machine). Salmonella prediction success of DFNN was evaluated with dataset including selected environmental and physicochemical features combined with predicted E. coli populations with and without correlation value. The performance of correlation value was evaluated with all possible mathematical dataset combinations (nCr) of six ponds. The higher accuracy performances (%) were achieved through DFNN analyses with correlation value between 88.89 and 98.41 compared to values with no correlation value from 83.68 to 96.99 for all dataset combinations. The findings emphasize the success of determined correlation value for the prediction of Salmonella presence in agricultural surface waters.

Source

Environmental Monitoring and Assessment

Volume

194

Issue

5

URI

https://doi.org/10.1007/s10661-022-10050-7
https://hdl.handle.net/11436/7085

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [6026]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.