• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of exhaust gas recirculation on the characteristics of compression ignition engines powered by tamanu methyl ester

Thumbnail

View/Open

Full Text / Tam Metin (3.170Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Senthilkumar, P. B.
Parthasarathy, M.
Afzal, Asif
Saleel, C. Ahamed
Cüce, Erdem
Saboor, Shaik
Gera, Tanya

Metadata

Show full item record

Citation

Senthilkumar, P.B., Parthasarathy, M., Afzal, A., Saleel, C.A., Cuce, E., Saboor, S. & Gera, T. (2022). The influence of exhaust gas recirculation on the characteristics of compression ignition engines powered by tamanu methyl ester. International journal of Low-Carbon Technologies, 17, 856-869. https://doi.org/10.1093/ijlct/ctac046

Abstract

This study aims to assess the performance of compression ignition (CI) engine powered with various biodiesels. The engine used for this test was a single-cylinder, water-cooled, naturally aspirated, CI engine. The biodiesels used in this study were neem methyl ester (NME), mahua methyl ester (MME), cottonseed methyl ester (CME), tamanu methyl ester (TME) and Albizia saman methyl ester (AME). According to the results, the TME-operated CI engine had 2.69%, 10.53%, 6.31% and 5.49% higher brake thermal efficiency than the MME, NME, CME and AME, respectively, without exhaust gas recirculation (EGR). Tamanu biodiesel outperformed the other test fuels in terms of performance and emissions. As a result, tamanu biodiesel was chosen as the best fuel for further testing. The results showed that tamanu biodiesel emitted more oxides of nitrogen (NOx) emissions than diesel. EGR could be used with the CI engine, resulting in a significant reduction in NOx emission. Compared to tamanu biodiesel without EGR conditions, the percentages of EGR 5%, 10% and 15% used with TME-operated CI engine produced 9.9%, 18% and 21.3% less NOx emission. The combination of EGR and tamanu biodiesel resulted in a slight increase in hydrocarbon, smoke and carbon monoxide emissions but a substantial reduction in NOx emissions. According to the study's findings, tamanu biodiesel with 10% EGR demonstrated optimal engine characteristics while having a low environmental impact.

Source

International journal of Low-Carbon Technologies

Volume

17

URI

https://doi.org/10.1093/ijlct/ctac046
https://hdl.handle.net/11436/7128

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.