• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill

Thumbnail

View/Open

Full Text / Tam Metin (13.89Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Wang, Aiai
Cao, Shuai
Yılmaz, Erol

Metadata

Show full item record

Citation

Wang, A., Cao, S. & Yilmaz. E. (2022). Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill. Construction and Building Materials, 344, 128179. https://doi.org/10.1016/j.conbuildmat.2022.128179

Abstract

This study explores the quality of cemented tailings backfill (CTB) reinforced with diverse nano cellulose materials (NCMs) such as micro-fibrillated cellulose (MFC), hydroxylated cellulose nanofiber (CNF), and cellulose crystal (CNC) at macroscopic/microscopic levels. Uniaxial compressive strength (UCS), cracking/failure patterns, deformation analysis, and microstructure of NCM-reinforced CTB samples were thoroughly explored. The results are as follows: the addition of CNF, CNC and MFC to samples augmented its UCS values by 0.95 MPa to 1.39 MPa, 1.43 MPa and 1.29 MPa, respectively. A two-aspect effect on UCS of CNF-, CNC-, and MFC-based samples was observed, namely an escalation followed by a reduction. The optimal concentration of NCM-reinforced CTB samples is 0.9 kg/m(3), and the strengthening effect of CNC on CTB is better than CNF and MFC. The cracks witnessed in CTB were created in the stress clouds after loading. NCM-reinforced CTB's failure pattern was portrayed by tensile/shear failure. Addition of NCMs to CTB well-inhibited crack propagations. Three types of nano cellulose showed diverse morphologies at 2000X, but CNF, CNC and MFC on cracks capably upgraded CTB's strength characteristics. It was lastly proven that unlike synthetic fibers, incorporating NCMs as a reinforcing material in fill could be a wise solution for boosting CTB recipes in terms of cost-efficiency, operational ease, and sustainability.

Source

Construction and Building Materials

Volume

344

URI

https://doi.org/10.1016/j.conbuildmat.2022.128179
https://hdl.handle.net/11436/7135

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.