• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An investigation of ensemble learning methods in classification problems and an application on non-small-cell lung cancer data

Thumbnail

View/Open

Full Text / Tam Metin (1.144Mb)

Access

info:eu-repo/semantics/openAccess

Date

2022

Author

Kıvrak, Mehmet
Çolak, Cemil

Metadata

Show full item record

Citation

Kıvrak, M. & Çolak, C. (2022). An investigation of ensemble learning methods in classification problems and an application on non-small-cell lung cancer data. Medicine Science, 11(29, 924-933. http://doi.org/10.5455/medscience.2021.10.339

Abstract

This study aims to classify NSCLC death status and consists of patient records of 24 variables created by the open-source dataset of the cancer data site. Besides, basic classifiers such as SMO (Sequential Minimal Optimization), K-NN (K-Nearest Neighbor), random forest, and XGBoost (Extreme Gradient Boosting), which are machine learning methods, and their performances, and voting, bagging, boosting, and stacking methods from ensemble learning methods were used. Performance evaluation of models was compared in terms of accuracy, specificity, sensitivity, precision, and Roc curve. The basic classifier performances of random forest, SMO, K-NN, and XGBoost classifiers, their performances in the bagging ensemble learning method, and their performances in the boosting ensemble learning method are evaluated. In addition, Model 1 (random forest + SMO), Model 2 (XGBoost + K-NN), Model 3 (random forest + K-NN), Model 4 (XGBoost+SMO), Model 5 (SMO+K-NN + random forest), Model 6 (SMO+K-NN+XGBoost) and Model 7 (SMO+K-NN + random forest + XGBoost) the performances of in different metrics were expressed. The boosting ensemble learning method, which provides the maximum classification performance with XGBoost, achieved a 0.982 accuracy value, 0.971 sensitivity value, 0.989 precision value, 0.989 specificity value, and 0.998 ROC curve. It is recommended to use ensemble learning methods for classification problems in patients with a high prevalence of cancer to achieve successful results.

Source

Medicine Science

Volume

11

Issue

2

URI

http://doi.org/10.5455/medscience.2021.10.339
https://hdl.handle.net/11436/7722

Collections

  • TF, Temel Tıp Bilimleri Bölümü Koleksiyonu [700]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [2844]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.