• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid BCI using singular value decomposition values of the fast walsh-hadamard transform coefficients

Thumbnail

View/Open

Full Text / Tam Metin (2.985Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Ergün, Ebru
Aydemir, Önder

Metadata

Show full item record

Citation

Ergün, E. & Aydemir, Ö. (2023). A Hybrid BCI Using Singular Value Decomposition Values of the Fast Walsh-Hadamard Transform Coefficients. IEEE Transactions on Cognitive and Developmental Systems , 15(2), 454-463. http://doi.org/10.1109/TCDS.2020.3028785

Abstract

One of the main goals of a brain computer interface (BCI) is to enable a communication channel between the brain and electronic devices by converting neural activity into control commands either for devices or applications. Because of the excellent temporal resolution, low set-up cost, and noninvasive nature, BCI systems generally use electroencephalography (EEG) for an input signal. However, EEG suffers from poor spatial resolution, and it is contaminated by various external and internal artifacts, such as environmental magnetic noises and body movements. These limitations directly affect the performance of the EEG-based BCI system, and it might not work at the desired level. On the other hand, near-infrared spectroscopy (NIRS) has an advantage of relative robustness against body movements and electrical artifacts. Additionally, it is also a promising neural signal recording method which provides good spatial resolution. In this study, we particularly focused on compensating the limitations of EEG-based BCI system by adding simultaneous NIRS modality features. In order to show the effectiveness of our method, we used an open-access data set, which was recorded from 29 subjects with simultaneous EEG-NIRS system during the imagination of opening and closing either a left- or right-hand. The features were extracted by calculating the singular value decomposition values of the Fast Walsh-Hadamard transform coefficients. Afterward, the k-nearest neighbor algorithm was performed to classify the features. The performance of the proposed method was evaluated in terms of classification accuracy and kappa value metrics. The achieved results showed that combining a hybrid BCI system with EEG-NIRS modalities can enhance the performance of a BCI by 6.75% compared to the single-modality solution of EEG.

Source

IEEE Transactions on Cognitive and Developmental Systems

Volume

15

Issue

2

URI

http://doi.org/10.1109/TCDS.2020.3028785
https://hdl.handle.net/11436/8081

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.