• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of case depths on corrosion properties of hard anodic oxidized A356 aluminum alloy

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Hacıosmanoğlu, Murat
Başyiğit, Aziz Barış
Hekimoğlu, Ali Paşa
Bican, Osman

Metadata

Show full item record

Citation

Hacıosmanoğlu, M., Başyiğit, A.B., Hekimoğlu, A.P. & Bican, O. (2023). Effect of case depths on corrosion properties of hard anodic oxidized A356 aluminum alloy. Surface Review and Letters, 30(04), 2350024. https://doi.org/10.1142/S0218625X23500245

Abstract

In this work, A356 alloy samples having a dimension of 4x20x20mm were coated by hard anodic oxidation method at eight different thicknesses up to similar to 80 mu m. The sample surfaces and longitudinal section of these surfaces in both coated and uncoated conditions were investigated with a scanning electron microscope (SEM). Microhardness of the coating layers and core regions (base metal) were determined with the microvickers hardness testing method. Corrosion properties of the coated and uncoated samples were investigated by an electrochemical corrosion test set up according to ASTM G5 standard. The test results obtained from the coated and uncoated surfaces were compared to each other. Coated surfaces exhibited fluctuant surface profile. Microcracks were formed on these surfaces. Microhardness of the coating layers increased with increasing coating layer thickness. Energy dispersed X-ray spectroscopy (EDS) analysis of the surfaces showed that oxygen rate on the surfaces increased after the corrosion tests. Corrosion rate of the A356 alloy coated by hard anodic oxidation decreased with increasing coating thickness up to 40-50 mu m, but after this coating thickness, the corrosion rate increased. The results obtained from the investigations were discussed based on the characteristics of the coated surfaces.

Source

Surface Review and Letters

Volume

30

Issue

04

URI

https://doi.org/10.1142/S0218625X23500245
https://hdl.handle.net/11436/8098

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.