• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of content and length of polypropylene fibers on strength and microstructure of cementitious tailings-waste rock fill

Thumbnail

View/Open

Full Text / Tam Metin (11.11Mb)

Access

info:eu-repo/semantics/openAccess

Date

2023

Author

Gao, Bo
Cao, Shuai
Yılmaz, Erol

Metadata

Show full item record

Citation

Gao, B., Cao, S. & Yılmaz, E. (2023). Effect of Content and Length of Polypropylene Fibers on Strength and Microstructure of Cementitious Tailings-Waste Rock Fill. Minerals, 13(2), 142. https://doi.org/10.3390/min13020142

Abstract

The mechanical strength properties of cemented tailings backfill are very important for the safe and environmentally friendly mining of mineral resources. To check the impact of polypropylene fiber on strength and microstructure of cementitious tailings waste rock fill (CTWRF), diverse fiber lengths (6 and 12 mm) and dosages (0-control specimen, 0.3, 0.6, and 0.9 wt.%) were considered to prepare fiber-reinforced CTWRF (FRCTWRF) matrices. Experiments such as UCS (uniaxial compressive strength), X-ray CT (computed tomography), and SEM (scanning electron microscopy) were implemented to better characterize the backfills studied. Results showed that UCS performance of FRCTWRF was the highest (0.93 MPa) value at 6 mm fiber long and 0.6 wt.% fiber content. The peak strain of FRCTWRF was the highest (2.88%) at 12 mm fiber long and 0.3 wt.% fiber content. Growing the length of fiber within FRCTWRF can reduce its fracture volume, enhancing the crack resistance of FRCTWRF. Fiber and FRCTWRF are closely linked to each other by the products of cement hydration. The findings of this work will offer the efficient use of FRCTWRF in mining practice, presenting diverse perspectives for mine operators and owners, since this newly formed cementitious fill quickens the strengths required for stope backfilling.

Source

Minerals

Volume

13

Issue

2

URI

https://doi.org/10.3390/min13020142
https://hdl.handle.net/11436/8170

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.