• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a new curve equation representing thin layer drying process

Thumbnail

View/Open

Full Text / Tam Metin (1.538Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Midilli, Adnan
Küçük, Haydar

Metadata

Show full item record

Citation

Midilli, A. & Küçük, H. (2023). Development of a new curve equation representing thin layer drying process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 9717-9730. https://doi.org/10.1080/15567036.2023.2240740

Abstract

In this study, a new model for thin-layer drying process was developed, tested, and verified by using data from the literature and compared. In this regard, the required data were collected from the experiments of green tea leaves in fixed bed and swirling flow fluidized bed infrared drying system, fixed bed, and swirling flow fluidized bed microwave drying system, apricot and kiwi in microwave drying system, and mammoth pumpkin (Cucurbita Maxima) in a laboratory scale dryer. As a result, the proposed model called "Improved Midilli-Kucuk Model" was determined to be the best model among the thin-layer drying-curve equations in the literature. Correlation coefficient (r), the coefficient of determination (R-2), reduced chi-square (?(2) ), reduced sum square error (RSSE), and mean bias error (MBE) were calculated between 0.99583 and 1, 0.99543 and 1, 0.00273 and 0, 0.00103 and 0, and 0.00046 and 0, respectively. The highest values of r, R-2,R- and R ? 2 and the lowest values of ?(2) , RMSE, RSSE, and MBE were obtained for green tea leaves drying in swirling flow fluidized bed infrared drying system at infrared power of 1000 W.

Source

Energy Sources, Part A: Recovery, Utilization, and Environmental Effects

Volume

45

Issue

4

URI

https://doi.org/10.1080/15567036.2023.2240740
https://hdl.handle.net/11436/8178

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.