• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solution-blown PA6-and PVDF-based nanofibrous composite mats for aerosol filtration

Thumbnail

View/Open

Full Text / Tam Metin (1.399Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Güngör, Melike
Çalışır, Mehmet Durmuş
Kılıç, Ali

Metadata

Show full item record

Citation

Güngör, M., Çalışır, M.D. & Kılıç, A. (2023). Solution-Blown PA6-and PVDF-Based Nanofibrous Composite Mats for Aerosol Filtration. Fibers and Polymers , 24(5), 1603-1612. https://doi.org/10.1007/s12221-023-00169-w

Abstract

Particulate matter (PM), especially with particle diameter below 2.5 mu m (PM2.5), causes serious impacts on human health. Nanofibrous filters are one of the most widely investigated materials for the filtration of PM2.5 and viruses from the air at high efficiency. Recent concerns regarding energy efficiency of air control units dictated that a high-performance air filter should not only provide high filter efficiency, but also low pressure drop and longer operational service. Herein, PA6- and PVDF-based nanofibrous filter media for particle filtration via modified solution-blowing (m-SB) system with two separate nozzles was produced. Depending on the concentration, the average fiber diameters for PA6 and PVDF alternated nearly 70-137 and 122-230 nm, respectively. After optimization of the production parameters for each polymer to obtain less droplet density and high fiber content, the mechanical and filtration performance of the composite filter structures produced by blowing two polymers simultaneously were investigated. According to results, the highest and lowest mechanical performance was obtained from PVDF-20 and PA6-20 samples while the composite nanofibrous sample ( PA/PVDF-5) was exhibited a value between them. However, contrary to expectations, the increased production time (PA/PVDF-10 sample) caused a decrease in the mechanical properties of the composite samples. This could be attributed to the abrasive effect of the twofold amount of air coming to the same point per unit of time on the fibrous mat because of simultaneous usage of two nozzles. On the other hand, the filtration efficiency of PA6/PVDF-10 composite filter mat was found superior with 93% efficiency and 194 Pa pressure drop values. Although this efficiency was very close to the efficiency from PVDF-20 sample, the composite sample was 150% thinner.

Source

Fibers and Polymers

Volume

24

Issue

5

URI

https://doi.org/10.1007/s12221-023-00169-w
https://hdl.handle.net/11436/8184

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.