• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing filtration performance of submicron particle filter media through bimodal structural design

View/Open

Full Text / Tam Metin (3.022Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Toptaş, Ali
Çalışır, Mehmet Durmuş
Güngör, Melike
Kılıç, Ali

Metadata

Show full item record

Citation

Toptaş, A., Çalışır, M.D., Güngör, M. & Kılıç, A. (2023). Enhancing filtration performance of submicron particle filter media through bimodal structural design. Polymer Engineering and Science, 2023. https://doi.org/10.1002/pen.26593

Abstract

Depth filtration is a widely utilized mechanism for submicron aerosol filtration using disposable filter cartridges and facemasks. The filter media should be carefully engineered to reach high filtration efficiency and dust-loading capacity at the expense of a low-pressure drop (ΔP). Filter media with bimodal fiber diameter distribution enhance particle capture by creating small pores with tiny fibers, while microfibers improve airflow, reduce ΔP, and increase the effective filter area for particle retention. In this study, bimodal filters were achieved through the homogeneous distribution or layered use of nanofibers and microfibers. The impact of the bimodal design was explored using fibrous mats produced through melt-blowing, solution-blowing, and electroblowing methods. Keeping the basis weight of filter samples at 30 gsm, using four-layered filters (4L) improved air permeability compared to single-layer samples. The 4L sample exhibited the highest performance, achieving 99.52% efficiency at 148 Pa. Moreover, replacing the melt-blown layer with bimodal mats in the 4L design increased the filtration efficiency to 99.61% keeping ΔP nearly the same. The corona discharge treatment yielded the highest efficiency (99.99%) in the 4BML sample, even after 1 month the efficiency was maintained at 99.90%, highlighting the advantage of bimodal fiber distribution in electret filters. Highlights: Four-layered filter (4L) structures resulted in improved air permeability. Bimodal layer (BL) achieved by adding SB nanofibers into the melt blowing. BL in 4L structure increased the efficiency from 99.52% to 99.61%. Modified BL sample (4BML) provides the highest QF (0.044 Pa−1) after 1 month. © 2023 Society of Plastics Engineers.

Source

Polymer Engineering and Science

URI

https://doi.org/10.1002/pen.26593
https://hdl.handle.net/11436/8708

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.