• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Production of sustainable low-layer graphene by green synthesis at room conditions for platinum-based direct methanol fuel cell

View/Open

Tam Metin / Full Text (8.284Mb)

Access

info:eu-repo/semantics/openAccess

Date

2023

Author

Erduran, Vildan
Bayat, Ramazan
Işık, İskender
Bayazıt, Tuğba
Şen, Fatih

Metadata

Show full item record

Citation

Erduran, V., Bayat, R., Işık, İ., Bayazıt, T. & Şen. F. (2023). Production of Sustainable Low-Layer Graphene by Green Synthesis at Room Conditions for Platinum-Based Direct Methanol Fuel Cell. ACS Enineering AU, 3(6), 537-545. https://doi.org/10.1021/acsengineeringau.3c00040

Abstract

In this study, a cost-effective and scalable method for the production of low-layer graphene (LLG) using sodium percarbonate (SPC) as a green delamination agent and its application in fuel cells is proposed. The obtained graphene showed a decrease in signal height in XRD analysis, indicating thinner layers. Raman analysis confirmed the presence of 7-8 layers of graphene. Field-emission scanning electron microscopy analysis revealed a uniform crystal structure, making it suitable for various applications. Direct methanol fuel cells (DMFCs) are widely recognized as efficient and environmentally friendly devices for converting chemical energy to electrical energy. The utilization of graphene-supported platinum (Pt) nanoparticles (NPs) as catalysts in DMFCs enhances their performance. In this study, Pt-graphene catalysts were synthesized by the chemical reduction method with graphene obtained by using SPC. Characterization through XRD and SEM analyses confirmed the homogeneous distribution of NPs on the carbon support. As a result of methanol oxidation studies, 57.73 and 21.45 mA/cm(2) values were obtained by using Pt@LLG and Pt catalysts, respectively. As a result of long-term stability and durability tests, it has been found that the Pt@LLG catalyst can be used effectively in metal oxidation experiments.

Source

ACS Enineering AU

Volume

3

Issue

6

URI

https://doi.org/10.1021/acsengineeringau.3c00040
https://hdl.handle.net/11436/8796

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.