• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • PubMed İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • PubMed İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting COVID-19 outcomes: Machine learning predictions across diverse datasets

Göster/Aç

Tam Metin / Full Text (637.0Kb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2023

Yazar

Panç, Kemal
Hürsoy, Nur
Başaran, Mustafa
Yazıcı, Mümin Murat
Kaba, Esat
Nalbant, Ercan
Gündoğdu, Hasan
Gürün, Enes

Üst veri

Tüm öğe kaydını göster

Künye

Panç, K., Hürsoy, N., Başaran, M., Yazici, M. M., Kaba, E., Nalbant, E., Gündoğdu, H., & Gürün, E. (2023). Predicting COVID-19 Outcomes: Machine Learning Predictions Across Diverse Datasets. Cureus, 15(12), e50932. https://doi.org/10.7759/cureus.50932

Özet

Background The COVID-19 infection has spread rapidly since its emergence and has affected a large part of the global population. With the increasing number of cases, researchers are trying to predict the prognosis of patients by using different data with artificial intelligence methods such as machine learning (ML). In this study, we aimed to predict mortality risk in COVID-19 patients using ML algorithms with different datasets. Methodology In this retrospective study, we evaluated the fever, oxygen saturation, laboratory results, thorax computed tomography (CT) findings, and comorbid diseases at admission to the hospital of 404 patients whose diagnosis was confirmed by the reverse transcription polymerase chain reaction test. Different datasets were created by combining the data. The Synthetic Minority Oversampling Technique was used to reduce the imbalance in the dataset. K-nearest neighbors, support vector machine, stochastic gradient descent, random forest, neural network, naive Bayes, logistic regression, gradient boosting, XGBoost, and AdaBoost models were used to create the ML algorithm, and the accuracy rates of mortality prediction were compared. Results When the dataset was created with CT parenchyma score, pulmonary artery and inferior vena cava diameters, and laboratory results, mortality was predicted with an accuracy of 98.4% with the gradient boosting model. Conclusions The study demonstrates that patient prognosis can be accurately predicted using simple measurements from thorax CT scans and laboratory findings.

Kaynak

Cureus

Cilt

15

Sayı

12

Bağlantı

https://doi.org/10.7759/cureus.50932
https://hdl.handle.net/11436/8812

Koleksiyonlar

  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1569]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.