• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic generation control of a hybrid PV-reheat thermal power system using RIME algorithm

View/Open

Tam Metin / Full Text (1.941Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Ekinci, Serdar
Can, Özay
Ayas, Mustafa Şinasi
İzci, Davut
Salman, Mohammad
Rashdan, Mostafa

Metadata

Show full item record

Citation

Ekinci, S., Can, Ö., Ayas, M.Ş., İzci, D., Salman, M. & Rashdan, M. (2024). Automatic Generation Control of a Hybrid PV-Reheat Thermal Power System Using RIME Algorithm. IEEE Access, 12, 26919-26930. http://doi.org/10.1109/ACCESS.2024.3367011

Abstract

This study focuses on the automatic generation control (AGC) system, which is crucial for maintaining balance between power generation and demand in power systems. The implementation of the AGC system needs to be more precise due to the increasing uncertainty surrounding renewable energy sources (RESs) and changes in demand. The objective of this study is to investigate the AGC functions in a two-area hybrid power system that combines a PV system with a reheat thermal system. To improve system performance, we utilize a proportional-integral (PI) controller. We utilized a recently developed optimization method, RIME, for tuning controller parameters. This technique has not been studied before in AGC processes. Furthermore, the optimization procedure utilizes a modified version of the integral of time-multiplied absolute error (ITAE) objective function. The study compares the performance of the RIME-tuned PI controller under various scenarios, including changes in thermal system load, load variations in both areas, and robustness considerations, with well-known techniques in the literature, such as the black widow optimization algorithm (BWOA), the salp swarm algorithm (SSA), the shuffled frog leaping algorithm (SFLA), the firefly algorithm (FA) and the genetic algorithm (GA). Our comparative study demonstrates that the proposed controller outperforms state-of-the-art approaches in terms of overshoot values and damping durations for both system frequency and tie-line power changes. The study provides valuable information on the effectiveness of the RIME-tuned PI controller in controlling AGC processes in complex hybrid power systems.

Source

IEEE Access

Volume

12

URI

http://doi.org/10.1109/ACCESS.2024.3367011
https://hdl.handle.net/11436/8911

Collections

  • Teknik Bilimler Meslek Yüksekokulu Koleksiyonu [201]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.