• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Production and characterization of activated carbon foams with various activation agents for electrochemical double layer capacitors (EDLCs) applications

View/Open

Tam Metin / Full Text (4.561Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Özçifçi, Zehra
Emirik, Mustafa
Akçay, Hakkı Türker
Yumak, Tuğrul

Metadata

Show full item record

Citation

Özçifçi, Z., Emirik, M., Akçay, H.T. & Yumak, T. (2024). Production and characterization of activated carbon foams with various activation agents for electrochemical double layer capacitors (EDLCs) applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 690, 133851. https://doi.org/10.1016/j.colsurfa.2024.133851

Abstract

Sucrose-based activated carbons were obtained by carbon foams with sugar and cobalt (II) nitrate as precursors, followed by using different chemical activation agents. The effect of Co(NO3)2 concentration, the carbonization temperature and the activation agent on the surface chemistry, porosity were investigated. Textural characterization and electrochemical tests were performed on the activated carbon samples (CF). The results showed that the activated carbon produced by H2SO4 and KOH at 800°C had a surface area of 691 m2/g and 1125 m2/g, 89% and 80% of the sample pore structure was microporous, and specific capacitance of 8.4 F/g and 162.2 F/g at a constant current density of 250 mA/g, respectively. K2CO3-activated carbon had 918 m2/g surface area and 63% of the sample pore structure with microporous and 1.4 F/g specific capacitance, H3PO4-activated carbon and ZnCl2-activated carbon had 1833 m2/g and 1597 m2/g surface area, 53% mesoporous and 50% mesoporous, 222.4 F/g and 149.9 F/g specific capacitance respectively. The most promosing result was observed in the electrochemical storage behavior of the carbon materials with hierarchical pore structure activated with H3PO4 is associated with increasing defect zones at the edges of micro- and mesoporous morphology, resulting in a higher surface area and increased conductivity of the material.

Source

Colloids and Surfaces A: Physicochemical and Engineering Aspects

Volume

690

URI

https://doi.org/10.1016/j.colsurfa.2024.133851
https://hdl.handle.net/11436/8982

Collections

  • FEF, Kimya Bölümü Koleksiyonu [474]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.