• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular diversity of Klebsiella pneumoniae clinical isolates: antimicrobial resistance, virulence, and biofilm formation

View/Open

Tam Metin / Full Text (2.726Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Kafa, Ayşe Hümeyra Taşkın
Aslan, Rukiye
Daştan, Sevgi Durna
Çelik, Cem
Hasbek, Mürşit
Eminoğlu, Ayşenur

Metadata

Show full item record

Citation

Taşkın Kafa, A. H., Aslan, R., Durna Daştan, S., Çeli K, C., Hasbek, M., & Emi Noğlu, A. (2024). Molecular diversity of Klebsiella pneumoniae clinical isolates: antimicrobial resistance, virulence, and biofilm formation. Nucleosides, nucleotides & nucleic acids, 1–17. Advance online publication. https://doi.org/10.1080/15257770.2024.2344741

Abstract

One of the mechanisms responsible for antibiotic resistance in Klebsiella pneumoniae is the enzymes produced by the bacteria; another important mechanism is the ability to form biofilm. In this study, antibiotic resistance, genes associated with virulence, and biofilm-forming properties of K. pneumoniae strains were investigated. A total of 100 K. pneumoniae isolates were obtained from different clinical samples identified by Matrix-Assisted Laser Desorption/Ionization time-of-flight Mass Spectrometry. Antimicrobial susceptibility testing was performed with the Phoenix 100 apparatus. The biofilm forming properties of strains were determined by the microtiter plate method. For molecular analysis, genes encoding the carbapenemase enzyme (bla(OXA-48), bla(NDM-1), bla(IMP), and bla(VIM)) and biofilm-related genes (treC, luxS, mrkA, and wza) were investigated by polymerase chain reaction (PCR). While 76% of clinical isolates were resistant to three or more antimicrobials, 24% were classified as non-multidrug resistant (non-MDR). When biofilm-forming capacities of clinical isolates were tested, it was determined that the resistant-isolates produced 59.2% strong biofilm, and susceptible-isolates produced 12.5% strong biofilm. According to PCR results, carbapenemase genes were determined as follows: bla(OXA-48)-70%, bla(NDM)-49%, and bla(KPC)-19%, bla(OXA-48)/bla(NDM)/bla(KPC)-12%, bla(OXA-48)/bla(NDM)-26%, and bla(OXA-48)/bla(KPC)-4%. The biofilm-associated genes in bacterial isolates were determined as follows: luxS-98%, treC-94%, mrkA-88%, and wza-15%. In addition, Hierarchical Clustering Tree and Heatmap analysis revealed an association between isolates that lacks resistance genes and isolates lacks biofilm-formation related genes that were included in MDR or non-MDR classes. As a result, biofilm should be considered in the treatment of MDR infections, and therapy should be planned accordingly. In addition, pursuing the data and genes of antibiotic resistance is significant for combating resistance.

Source

Nucleosides, Nucleotides & Nucleic Acids

URI

https://doi.org/10.1080/15257770.2024.2344741
https://hdl.handle.net/11436/9057

Collections

  • FEF, Biyoloji Bölümü Koleksiyonu [588]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.