• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Introducing the chemical potential of Cu-Mn-Al alloys for structural, electrical and thermal properties

View/Open

Tam Metin / Full Text (5.499Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Yüzüak, Ercüment
Yüzüak, Gizem Durak

Metadata

Show full item record

Citation

Yüzüak, E. & Yüzüak, G.D. (2024). Introducing the chemical potential of Cu-Mn-Al alloys for structural, electrical and thermal properties. Bulletin of Materials Science, 47(2), 108. https://doi.org/10.1007/s12034-024-03216-1

Abstract

This study investigates the Martensite transition in Cu-Mn-Al alloys (CMAs) via the use of many methods, including scanning electron microscopy, temperature-dependent X-ray diffraction, resistivity and thermal measurements. The Martensite transition hysteresis and characteristic temperature are primarily determined by the alloy composition, crystal structure and residual stress. Furthermore, these alloys have been reported to have surface and crystallographic characteristics often associated with twinning structures. Resistivity experiments conducted during heating and cooling cycles demonstrate a 2.57-fold increase inside the phase change zone, emphasizing the influence of the transition on electrical conductivity. The Martensite transition temperature may be altered by 110 K by the manipulation of the electron-to-atom ratio (e/a), indicating the high susceptibility of this temperature to changes in chemical composition. Differential scanning calorimetry shows that the transition is accompanied by a maximum entropy shift of 48 J kg-1. K, which offers valuable information on the thermodynamic driving factors involved. This work successfully attains a cooling power of 1350 W, which is equivalent to the cooling power of NiTi wire (1500 W), by using a theoretical manufacturing method and optimizing the CMAs. Overall, this work clarifies the Martensite transition in CMAs, highlighting its impact on their characteristics and indicating their potential for effective thermal energy storage and release applications. It is advisable to further optimize their performance and economic viability by considering the e/a ratio.

Source

Bulletin of Materials Science

Volume

47

Issue

2

URI

https://doi.org/10.1007/s12034-024-03216-1
https://hdl.handle.net/11436/9062

Collections

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [117]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.