• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vibration data-driven anomaly detection in UAVs: A deep learning approach

View/Open

Tam Metin / Full Text (4.163Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Özkat, Erkan Caner

Metadata

Show full item record

Citation

Ozkat, E. C. (2024). Vibration data-driven anomaly detection in UAVs: A deep learning approach. Engineering Science and Technology, an International Journal, 54, 101702. https://doi.org/10.1016/j.jestch.2024.101702

Abstract

Unmanned Aerial Vehicles (UAVs) are employed for diverse applications, including aerial surveillance and package delivery. However, the occurrence of faults, especially propeller failures, poses significant risks to safe and efficient operations. Detecting such faults at an early stage is critical to avoiding catastrophic outcomes and ensuring the reliability and lifespan of UAVs. To address this crucial need, this study proposes a novel approach for monitoring vibration signals using a wavelet scattering long short-term memory (LSTM) autoencoder network. The LSTM autoencoder can learn temporal patterns from input signals, whereas wavelet scattering can capture the dynamics and interactions of various frequency components of signals. First, a deliberate modification was made to one of the propeller blades of the DJI M600 multi-rotor UAV to deliberately induce vibration. The proposed network was then evaluated on the acquired vibration signal using the MTi-G-700 IMU. The results showed that warning signals were generated from all axes before failures occurred. Notably, the earliest warnings were obtained from y-axis data within 100 s, while the first warning from z-axis data was recognized 130 s later. The failure occurred at roughly 280 s. The experimental findings indicate that the proposed method can accurately detect anomalies that could potentially lead to failure.

Source

Engineering Science and Technology, an International Journal

Volume

54

URI

https://doi.org/10.1016/j.jestch.2024.101702
https://hdl.handle.net/11436/9086

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.