• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Positional health assessment of collaborative robots based on long short-term memory auto-encoder (LSTMAE) network

View/Open

Tam Metin / Full Text (3.465Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Hasan, Naimul
Webb, Louie
Chinanthai, Malarvizhi Kaniappan
Hossain, Mohammad Al-Amin
Özkat, Erkan Caner
Tokhi, Mohammad Osman
Alkan, Buğra

Metadata

Show full item record

Citation

Hassan, N., Webb, L., Chinanthai, M.K., Hossain, M.A.A., Ozkat, E.C., Tokhi, M.O. & Alkan, B. (2024). Positional Health Assessment of Collaborative Robots Based on Long Short-Term Memory Auto-Encoder (LSTMAE) Network. Synergetic Cooperation between Robots and Humans, 811, 323-335. https://doi.org/10.1007/978-3-031-47272-5_27

Abstract

Calibration is a vital part of ensuring the safety and smooth operation of any industrial robot and this is particularly essential for collaborative robots as any issue pertaining to safety can adversely impact the human operator. Towards this aim, Prognostics and Health Management (PHM) has been widely implemented in the context of collaborative robots to ensure safe and efficient working environments. In this research, as a subset of PHM research, a novel positional health assessment approach based on a Long Short-Term Memory auto-encoder network (LSTMAE) is proposed. An experimental test setup is utilised, wherein the collaborative robot is subject to variations of coordinate system positional error. The operational 3-axis position time-series data of the collaborative robot is collected with the aid of an industrial data acquisition platform utilising influxDB. The experiments show that, with the aid of this approach, manufacturers can assess the positional health of their collaborative robot systems.

Source

Synergetic Cooperation between Robots and Humans

Volume

811

URI

https://doi.org/10.1007/978-3-031-47272-5_27
https://hdl.handle.net/11436/9327

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [335]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.