• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zircon U-Pb, geochemical and isotopic constraints on the age and origin of A- and I-type granites and gabbro-diorites from NW Iran

Thumbnail

View/Open

Full Text / Tam Metin (4.323Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Moghadam, Hadi Shafaii
Li, Qiu-Li
Griffin, William L.
Stern, Robert J.
Chiaradia, Massimo
Karslı, Orhan
Ghorbani, Ghasem
O'Reilly, S. Y.
Pourmohsen, Mehrdad

Metadata

Show full item record

Citation

Moghadam, H.S., Li, Q.L., Griffin, W.L., Stern, R.J., Chiaradia, M., KArslı, O., Ghorbani, G., O'Reilly, S. Y. & Pourmohsen, M. (2020). Zircon U-Pb, geochemical and isotopic constraints on the age and origin of A- and I-type granites and gabbro-diorites from NW Iran. Lithos, 374, 105688. https://doi.org/10.1016/j.lithos.2020.105688

Abstract

The continental crust of NW Iran is intruded by Late Cretaceous I-type granites and gabbro-diorites as well as Paleocene A-type granites. SIMS and LA-ICPMS U-Pb analyses of zircons yield ages of 100-92 Ma (Late Cretaceous) for I-type granites and gabbro-diorites and 61-63 Ma (Paleocene) for A-type granites. Late Cretaceous gabbro-diorites (including mafic microgranular enclaves; MMEs) from NW Iran show variably evolved signatures. They show depletion in Nb and Ta on N-MORB-normalized trace-element spider-diagrams and have high Th/Yb ratios, suggesting their precursor magmas were generated in a subduction-related environment. Gabbro-diorites have variable zircon epsilon Hf(t) values of +1.2 to +8, delta O-18 of 6.4 to 7.4 parts per thousand and bulk rock epsilon Nd(t) of -1.4 to similar to +4.9. the geochemical and isotopic data attest to melting of subcontinental lithospheric mantle (SCLM) to generate near-primitive gabbros with radiogenic Nd isotopes (epsilon Nd(t) = similar to +4.9) and high Nb/Ta and Zr/Hf ratios, similar to mantle melts (Nb/Ta similar to 17 and Zr/Hf similar to 38). These mafic melts underwent further fractionation and mixing with crustal melts to generate Late Cretaceous evolved gabbro-diorites. Geochemical data for I-type granites indicate both Nb-Ta negative and positive anomalies along with enrichment in light REEs. These rocks are peraluminous and have variable bulk-rock epsilon Nd(t) (-1.4 to +1.3), zircon epsilon Hf(t) (+2.8 to +10.4) and delta O-18 (4.7-7.3 parts per thousand) values, but radiogenic bulk rock Pb isotopes. the geochemical and isotopic signatures of these granites suggest interaction of mantle-derived mafic magmas (similar to near-primitive Oshnavieh gabbros) with middle-upper crust through assimilation-fractional crystallization (AFC) to produce Late Cretaceous I-type granites. Paleocene A-type granites have distinctive geochemical features compared to I-type granitoids, including enrichment in Nb-Ta, high bulk rock epsilon Nd(t) (+3.3 to +3.9) and zircon epsilon Hf(t) (+5.1 - +9.9) values. Alkaline granites are ferroan; they have low MgO, CaO, Sr, Ba and Eu concentrations and high total Fe2O3, K2O, Na2O, Al2O3, Ga, Zr, Nb-Ta, Th and rare earth element (REE) abundances and Ga/Al ratios. These rocks might be related to fractionation of a melt derived from a sub-continental lithospheric mantle, but which interacted with asthenosphere-derived melts. We suggest that subduction initiation and the resultant slab roll-back caused extreme extension in the overlying Iranian plate, induced convection in the mantle wedge and led to the decompression melting of SCLM. Rising mantle-derived magmas assimilated middle-upper crustal rocks. Fractionating mantle-derived magmas and contamination with crustal components produced evolved gabbro-diorites and I-type granites. in contrast, asthenospheric upwelling during the Paleocene provided heat for melting and interaction with SCLM to generate the precursor melts to the A-type granites. (C) 2020 Published by Elsevier B.V.

Source

Lithos

Volume

374

URI

https://doi.org/10.1016/j.lithos.2020.105688
https://hdl.handle.net/11436/951

Collections

  • Jeoloji Mühendisliği Bölümü Koleksiyonu [78]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.