• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical fatigue damage analysis and mathematical modeling of articular cartilage under cyclic load via hyperelasticity theory

View/Open

Tam Metin / Full Text (7.314Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Furjan, M.
Cai, J. X.
Shen, X.
Yaylacı, Murat
Bidgoli, M. Rabani
Kolahchi, R.

Metadata

Show full item record

Citation

Furjan, M., Cai, J. X., Shan, L., Shen, X., Yaylacı, M., Rabani bidgoli, M., & Kolahchi, R. (2024). Numerical fatigue damage analysis and mathematical modeling of articular cartilage under cyclic load via hyperelasticity theory. Applied Mathematical Modelling, 136, 115613. https://doi.org/10.1016/j.apm.2024.07.020

Abstract

The paper presents the modeling of damage to articular cartilage under cyclic daily loads using a curved beam model and hyper-elasticity theory. Mainly, articular cartilage (AC) is a kind of very important biological tissue that has the fundamental role of withstanding applied mechanical loads and providing smooth movement of joints. The existence of mechanical loads, however, has a huge influence on the behavior and the entire healthiness of AC. These loads, over time, can cause injury through fatigue-type damage because of frequent stresses. The basic aim of this study is to mainly offer a detailed mathematical model measuring the damage caused in AC under the action of mechanical forces incorporating different variants like age, body mass index, metabolic activity, functionally graded, porosity and prestresses. The structural energies including potential energy according to the neoHookean model as well as kinetic energy and external work are achieved through the use of strain-displacement and stress-strain relations. Then, the nonlinear governing equations of the articular cartilage are derived using Hamilton's principle. Furthermore, the mathematical model has been implemented numerically through the differential quadrature method (DQM). A qualitative correspondence between the numerical predictions and experimental data has led us to conclude that this model has the potential to serve as a valuable tool for physicians and therapists. The results of this research indicate that among the factors affecting the increase of damage in cartilage, the most important factor is the body mass index, followed by a person's age, hormonal conditions, and cartilage thickness with a negative effect. The probability of damage for an athlete is about 33 percent higher than a normal person, and for a weightlifter (heavy sports) it is about 140 percent higher than a normal person.

Source

Applied Mathematical Modelling

Volume

136

URI

https://doi.org/10.1016/j.apm.2024.07.020
https://hdl.handle.net/11436/9605

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.