• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MR image fusion-based parotid gland tumor detection

View/Open

Tam Metin / Full Text (2.778Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Sünnetçi, Kubilay Muhammed
Kaba, Esat
Çeliker, Fatma Beyazal
Alkan, Ahmet

Metadata

Show full item record

Citation

Sunnetci, K. M., Kaba, E., Celiker, F. B., & Alkan, A. (2024). MR Image Fusion-Based Parotid Gland Tumor Detection. Journal of Imaging Informatics in Medicine. https://doi.org/10.1007/s10278-024-01137-3

Abstract

The differentiation of benign and malignant parotid gland tumors is of major significance as it directly affects the treatment process. In addition, it is also a vital task in terms of early and accurate diagnosis of parotid gland tumors and the determination of treatment planning accordingly. As in other diseases, the differentiation of tumor types involves several challenging, time-consuming, and laborious processes. In the study, Magnetic Resonance (MR) images of 114 patients with parotid gland tumors are used for training and testing purposes by Image Fusion (IF). After the Apparent Diffusion Coefficient (ADC), Contrast-enhanced T1-w (T1C-w), and T2-w sequences are cropped, IF (ADC, T1C-w), IF (ADC, T2-w), IF (T1C-w, T2-w), and IF (ADC, T1C-w, T2-w) datasets are obtained for different combinations of these sequences using a two-dimensional Discrete Wavelet Transform (DWT)-based fusion technique. For each of these four datasets, ResNet18, GoogLeNet, and DenseNet-201 architectures are trained separately, and thus, 12 models are obtained in the study. A Graphical User Interface (GUI) application that contains the most successful of these trained architectures for each data is also designed to support the users. The designed GUI application not only allows the fusing of different sequence images but also predicts whether the label of the fused image is benign or malignant. The results show that the DenseNet-201 models for IF (ADC, T1C-w), IF (ADC, T2-w), and IF (ADC, T1C-w, T2-w) are better than the others, with accuracies of 95.45%, 95.96%, and 92.93%, respectively. It is also noted in the study that the most successful model for IF (T1C-w, T2-w) is ResNet18, and its accuracy is equal to 94.95%.

Source

Journal of Imaging Informatics in Medicine

URI

https://doi.org/10.1007/s10278-024-01137-3
https://hdl.handle.net/11436/9607

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1559]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.