• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using supplemental linear viscous dampers for experimentally verified base-isolated building: Case study

View/Open

Tam Metin / Full Text (1.696Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Kıral, Adnan
Gürbüz, Ali

Metadata

Show full item record

Citation

Kıral, A., & Gurbuz, A. (2024). Using supplemental linear viscous dampers for experimentally verified base-isolated building: Case study. Journal of Structural Engineering & Applied Mechanics, 7(1), 34–50. https://doi.org/10.31462/jseam.2024.01034050

Abstract

As a way to reduce structural vibration, many buildings are initially intended to be base-isolated. However, because of the base isolators' inherent nonlinear behavior, particularly in earthquake-prone areas, buildings equipped with base isolation systems may experience significant displacement demands. Therefore, in certain situations, it might be required to use additional damping devices to control the seismic response of base-isolated buildings. This study examines three different building models: Fixed Base (FB), Isolated Base (IB), and Isolated Base with installed Viscous Dampers (IB&VD) in the base layer of the building. Sosokan, a nine-story structure on Keio University's Yagami Campus, is utilized for this purpose. The building is modeled in MATLAB. A state-space representation of the building with a Maxwell-type viscous damper model is used. The responses of the building models with FB, IB, and IB&VD are evaluated by time history analyses using eight ground motion records. Certain engineering requirements criteria, such as inter-story drift ratios and absolute acceleration, are taken into consideration while evaluating the findings of the analysis. Based on one of this study's main findings, a base-isolated building with passive viscous damping in the base layer could significantly reduce both maximum seismic displacement and acceleration. Maximum acceleration and inter-story drift are lowered by up to 92% and 89%, respectively, when IB&VD is scaled to the FB model. Based on the results of this study, passive viscous dampers combined with building base isolation are not only useful for multi-objective optimization (i.e., reducing acceleration as well as inter-story drift) but they can also be used to reduce high-frequency accelerations, which could be important for building equipment that is sensitive to acceleration.

Source

Journal of Structural Engineering & Applied Mechanics (Online)

Volume

7

Issue

1

URI

https://doi.org/10.31462/jseam.2024.01034050
https://hdl.handle.net/11436/9661

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [2844]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.