• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Can artificial intelligence distinguish between malignant and benign mediastinal lymph nodes using sonographic features on EBUS images?

Thumbnail

View/Open

Full Text / Tam Metin (1.498Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Özçelik, Neslihan
Özçelik, Ali Erdem
Bülbül, Yılmaz
Öztuna, Funda
Özlü, Tevfik

Metadata

Show full item record

Citation

Ozcelik, N., Ozcelik, A. E., Bulbul, Y., Oztuna, F., & Ozlu, T. (2020). Can artificial intelligence distinguish between malignant and benign mediastinal lymph nodes using sonographic features on EBUS images?. Current medical research and opinion, 36(12), 2019–2024. https://doi.org/10.1080/03007995.2020.1837763

Abstract

Aims This study aimed to develop a new intelligent diagnostic approach using an artificial neural network (ANN). Moreover, we investigated whether the learning-method-guided quantitative analysis approach adequately described mediastinal lymphadenopathies on endobronchial ultrasound (EBUS) images. Methods in total, 345 lymph nodes (LNs) from 345 EBUS images were used as source input datasets for the application group. the group consisted of 300 and 45 textural patterns as input and output variables, respectively. the input and output datasets were processed using MATLAB. All these datasets were utilized for the training and testing of the ANN. Results the best diagnostic accuracy was 82% of that obtained from the textural patterns of the LNs pattern (89% sensitivity, 72% specificity, and 78.2% area under the curve). the negative predictive values were 81% compared to the corresponding positive predictive values of 83%. Due to the application group's pattern-based evaluation, the LN pattern was statistically significant (p = .002). Conclusions the proposed intelligent approach could be useful in making diagnoses. Further development is required to improve the diagnostic accuracy of the visual interpretation.

Source

Current Medical Research and Opinion

URI

https://doi.org/10.1080/03007995.2020.1837763
https://hdl.handle.net/11436/971

Collections

  • Peyzaj Mimarlığı Bölümü Koleksiyonu [81]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1559]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.