• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Divergent chimney and sloping collector design for ground heat source integrated solar chimney power plants

View/Open

Tam Metin / Full Text (1.288Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Cüce, Erdem

Metadata

Show full item record

Citation

Cuce, E. (2024). Divergent chimney and sloping collector design for ground heat source integrated solar chimney power plants. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-024-13669-5

Abstract

With energy resources being fossil fuel-based, increasing energy production has already reached levels that threaten human health. In this situation, the use of alternative energy sources is seen as the only solution. Solar energy is seen as the most promising source among these alternative energies in terms of its potential. Hence, therefore, this study focuses entirely on one of the solar energy sources. This research aims to assess the impact of the design and underground additional heat source (AHS) on the system performance based on the Manzanares pilot plant (MPP), the first on-site practice of solar chimney power plants. Divergent chimney-SCPP with sloping collector (DISCPP) is analysed in the present work. For DISCPP, the influence of the underground AHS in the range of 50–250 °C on the system outputs is examined. The study demonstrates a remarkable enhancement in power output (PO), with the plant generating 51,545 kW under the reference case conditions. The findings signify that when utilising the DISCPP system, the output soars to 247,672 kW under identical climatic conditions. During sunless hours, a PO of 61,956 kW is achieved with the DISCPP at an underground AHS temperature of 50 °C. Moreover, when the source temperature reaches 250 °C during sunless hours, the DISCPP system continues to deliver a significant output of 450 kW. These outcomes underscore the exceptional performance and reliability of the DISCPP system, even under varying conditions.

Source

Journal of Thermal Analysis and Calorimetry

URI

https://doi.org/10.1007/s10973-024-13669-5
https://hdl.handle.net/11436/9732

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [335]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.