• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of intermittent interruption of fluid supply on flow boiling phenomenon in micro-pinned heat sinks

View/Open

Tam Metin / Full Text (20.35Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Markal, Burak
Evcimen, Alperen

Metadata

Show full item record

Citation

Markal, B., & Evcimen, A. (2024). Effect of intermittent interruption of fluid supply on flow boiling phenomenon in micro-pinned heat sinks. International Communications in Heat and Mass Transfer, 159, 108291. https://doi.org/10.1016/j.icheatmasstransfer.2024.108291

Abstract

Among promising cooling options, flow boiling in micro-structures is a strong alternative. However, for systems operating under very high heat loads, any shortage or discontinuity of working fluid can lead to irreversible problems and system failure. Hence, here, this problem is addressed; and as the first time, effect of intermittent interruption of fluid supply on flow boiling phenomenon in expanding cross sectional heat sinks with micro pins and cavities (EHSPC) is experimentally studied. In addition to EHSPC, a classical heat-sink having parallel channels (PHSC) is used for comparison. Different downtimes (DT), more clearly, time for duration of interruption of water flow (0, 3, 6, 9, 12 s), heating powers (145 and 200 W) and heat sinks (EHSPC and PHSC) constitute variable conditions, while mass flux (G = 180kgm−2 s−1) and inlet temperature (Ti = 73 °C) are constant conditions. As conclusion, for pump-failure conditions, EHSPC can successfully manage cooling process. Simultaneous existence of micro-cavities, micro-pin-fins and enlarging cross-section successfully tolerates time-period at which pump doesn't work. The magnitude of quasi-sinusoidal type oscillations of EHSPC is significantly small compared to those obtained for PHSC. Compared to PHSC, enhancement percentage of htp in favor of EHSPC are 19.2 %, 33.9 %, 44.1 % and 119.5 %, respectively for DT = 0, 3 s, 6 s, and 9 s.

Source

International Communications in Heat and Mass Transfer

Volume

159

URI

https://doi.org/10.1016/j.icheatmasstransfer.2024.108291
https://hdl.handle.net/11436/9761

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.