• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of flow boiling phenomenon in micro-pin-fin heat sinks adapted to actively direction-changing moving systems

View/Open

Tam Metin / Full Text (8.114Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Markal, Burak
Evcimen, Alperen

Metadata

Show full item record

Citation

Markal, B., & Evcimen, A. (2024). Investigation of flow boiling phenomenon in micro-pin-fin heat sinks adapted to actively direction-changing moving systems. International Communications in Heat and Mass Transfer, 159, 108310. https://doi.org/10.1016/j.icheatmasstransfer.2024.108310

Abstract

Thermal management via boiling phenomenon in micro domain is one of the promising techniques for different types of aircrafts being continuously subjected to direction-changed movement. Therefore, in this paper, different from the literature, flow boiling phenomenon in expanding micro-pin-fin heat sinks with micro cavities (EH) continuously making angular motion is experimentally examined. To reveal effects of decreasing fin number (or increasing cross sectional area) along the heat sink and existence of micro cavities, the results, also, are compared to those obtained for conventional heat sink (CH). Angular range of motion (ARM = 0°↔15°, 0°↔30° and 0°↔45°), period of angular movement (PAM = 10 s, 30 s, and 60 s) and heating power (220 W and 300 W) are the variable parameters. Mass flux (G) and inlet temperature (Ti) are constants as 120 kgm−2 s−1 and 74 °C, respectively. It is concluded that the EH can successfully damp possible effect of variation in angular orientation on thermal characteristics, and thus, the EH leads to more stable thermal performance compared to CH. The key mechanism determining deviation characteristics is interaction between gravitational force and fluid inertia force. By enhancing wicking phenomenon and suppressing evaporation momentum force, the influence of angular variation can be minimized.

Source

International Communications in Heat and Mass Transfer

Volume

159

URI

https://doi.org/10.1016/j.icheatmasstransfer.2024.108310
https://hdl.handle.net/11436/9780

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.