• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical fiber technology for efficient daylighting and thermal control: a sustainable approach for buildings

View/Open

Tam Metin / Full Text (2.207Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Udhwani, Lokesh
Soni, Archana
Cüce, Erdem
Kumarasamy, Sudhakar

Metadata

Show full item record

Citation

Udhwani, L., Soni, A., Cuce, E., & Kumarasamy, S. (2024). Optical Fiber Technology for Efficient Daylighting and Thermal Control: A Sustainable Approach for Buildings. Eng, 5(4), 2680–2694. https://doi.org/10.3390/eng5040140

Abstract

Different direct solar harvesting systems for daylighting are being explored to achieve high uniform illumination deep within buildings at minimal cost. A promising solution to make these systems cost-effective is the use of plastic optical fibers (POFs). However, heat-related issues with low-cost POFs need to be addressed for the widespread adoption of efficient daylighting technologies. Previous studies have explored solutions for this overheating problem, but their effectiveness remains uncertain. This study proposes a low-cost fiber optic daylighting system integrated with a newly patented mechanical component designed to secure the fiber optic bundle at the focal point, providing three levels of heat filtration while ensuring uniform illumination. Our methodology involves selecting a small area, installing the setup, and measuring both heat and light readings, followed by validation through software simulations. The operational principle of this technology is explained, and experimental tests using lux meters and infrared thermometers were conducted to investigate the system’s characteristics. The three-level heat filtration device reduces temperature by approximately 35 °C at the surface of the optical fiber, and the average illumination of the room is around 400 lux. These results were further verified using RELUX simulation software. The findings demonstrate the promising potential of this new device in solar heat filtration and achieving uniform illumination. Recommendations for mitigating overheating damage and exploring heat filtering possibilities in new parabolic solar daylighting systems for further research are also provided.

Source

Eng

Volume

5

Issue

4

URI

https://doi.org/10.3390/eng5040140
https://hdl.handle.net/11436/9901

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.