• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification and characterization of a novel rat MAVS variant modulating NFκB signaling

View/Open

Tam Metin / Full Text (5.693Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Nalkıran, İhsan
Nalkıran, Hatice Sevim

Metadata

Show full item record

Citation

Nalkiran, I., & Sevim Nalkiran, H. (2025). Identification and Characterization of a Novel Rat MAVS Variant Modulating NFκB Signaling. Biomolecules, 15(1), 139. https://doi.org/10.3390/biom15010139

Abstract

The innate immune response serves as the primary defense against viral infections, with the recognition of viral nucleic acids by pattern recognition receptors (PRRs) initiating antiviral responses. Mitochondrial antiviral-signaling protein (MAVS) acts as a pivotal adaptor protein in the RIG-I pathway. Alternative splicing further diversifies MAVS isoforms. In this study, we identified and characterized a novel rat MAVS variant (MAVS500) with a twenty-one-nucleotide deletion, resulting in a protein seven amino acids shorter than the wild-type (WT) rat MAVS. The MAVS500 was cloned from the rat bladder cancer cell line, NBT-II, using specific primers, and subsequently sequenced. MAVS500 was overexpressed in HEK293T and NBT-II cells and then analyzed using Western Blotting and fluorescence microscopy. MAVS500 overexpression increased downstream signaling proteins, NF kappa beta and pNF kappa beta, compared to WT rat MAVS in both human and rat cell lines. Structural analysis revealed a high similarity between MAVS500 and WT rat MAVS. The seven-amino-acid deletion in MAVS500 induces significant conformational rearrangements, reducing helical turns and altering structural dynamics, which may impact its interactions with downstream signaling molecules in the innate immune pathway. The identification of MAVS500 enhances our understanding of MAVS regulation and its role in the innate immune response, providing valuable insights into alternative splicing as a mechanism for diversifying protein function.

Source

Biomolecules

Volume

15

Issue

1

URI

https://doi.org/10.3390/biom15010139
https://hdl.handle.net/11436/9999

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • TF, Temel Tıp Bilimleri Bölümü Koleksiyonu [691]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.