Basit öğe kaydını göster

dc.contributor.authorAlbayrak, Ümit
dc.contributor.authorGölcük, Adem
dc.contributor.authorAktaş, Sinan
dc.contributor.authorCoruh, Uğur
dc.contributor.authorTaşdemir, Şakir
dc.contributor.authorBaykan, Ömer Kaan
dc.date.accessioned2025-02-19T12:56:10Z
dc.date.available2025-02-19T12:56:10Z
dc.date.issued2025en_US
dc.identifier.citationAlbayrak, U., Golcuk, A., Aktas, S., Coruh, U., Tasdemir, S., & Baykan, O. K. (2025). Classification and Analysis of Agaricus bisporus Diseases with Pre-Trained Deep Learning Models. Agronomy, 15(1), 226. https://doi.org/10.3390/agronomy15010226en_US
dc.identifier.issn2073-4395
dc.identifier.urihttps://doi.org/10.3390/agronomy15010226
dc.identifier.urihttps://hdl.handle.net/11436/10025
dc.description.abstractThis research evaluates 20 advanced convolutional neural network (CNN) architectures for classifying mushroom diseases in Agaricus bisporus, utilizing a custom dataset of 3195 images (2464 infected and 731 healthy mushrooms) captured under uniform white-light conditions. The consistent illumination in the dataset enhances the robustness and practical usability of the assessed models. Using a weighted scoring system that incorporates precision, recall, F1-score, area under the ROC curve (AUC), and average precision (AP), ResNet-50 achieved the highest overall score of 99.70%, demonstrating outstanding performance across all disease categories. DenseNet-201 and DarkNet-53 followed closely, confirming their reliability in classification tasks with high recall and precision values. Confusion matrices and ROC curves further validated the classification capabilities of the models. These findings underscore the potential of CNN-based approaches for accurate and efficient early detection of mushroom diseases, contributing to more sustainable and data-driven agricultural practices.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAgaricus bisporusen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectImage processingen_US
dc.subjectMushroom diseasesen_US
dc.subjectPrecision agricultureen_US
dc.subjectSmart farmingen_US
dc.titleClassification and analysis of agaricus bisporus diseases with pre-trained deep learning modelsen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.institutionauthorCoruh, Uğur
dc.identifier.doi10.3390/agronomy15010226en_US
dc.identifier.volume15en_US
dc.identifier.issue1en_US
dc.identifier.startpage226en_US
dc.relation.journalAgronomyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster