• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sensor classification for CO2 detection in IoT-Enabled indoor air quality monitoring systems

View/Open

Full Text / Tam Metin (416.0Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2025

Author

Gül, Fatih
Eroğlu, Hasan

Metadata

Show full item record

Citation

Gül, F., & Eroǧlu, H. (2024). Sensor Classification for CO2 Detection in IoT-Enabled Indoor Air Quality Monitoring Systems. In 2024 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS) (pp. 150–154). IEEE. https://doi.org/10.1109/agers65212.2024.10932886

Abstract

Indoor air quality (IAQ) is a critical factor in ensuring the health, comfort, and productivity of individuals in indoor spaces. Among various pollutants, carbon dioxide (CO2) is a primary indicator of air quality in enclosed environments. Elevated CO2 levels can cause discomfort, reduced cognitive function, and even health risks when concentrations exceed safe limits. The advancement of Internet of Things (IoT) technology has significantly enhanced IAQ monitoring by enabling real-time, remote data collection, analysis, and automated control of air quality. This integration relies heavily on the use of sensors that can accurately detect CO2 levels, allowing for intelligent and adaptive systems. Several types of sensors are commonly used for CO2 detection in IoT-enabled IAQ monitoring systems. These sensors vary in terms of detection principle, performance, accuracy, and application suitability. This paper explores the different sensor technologies within 10 key parameters and 5 detection principles for CO2 detection, focusing on their trade-off in IoT-based IAQ monitoring systems.

Source

IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology, AGERS

Issue

2024

URI

https://doi.org/10.1109/agers65212.2024.10932886
https://hdl.handle.net/11436/10431

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [198]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.