• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combining fuzzy logic and genetic algorithms to optimize cost, time and quality in modern agriculture

View/Open

Full Text / Tam Metin (2.984Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Erdoğdu, Aylin
Dayı, Faruk
Yıldız, Ferah
Yanık, Ahmet
Ganji, Farshad

Metadata

Show full item record

Citation

Erdoğdu, A., Dayi, F., Yildiz, F., Yanik, A., & Ganji, F. (2025). Combining Fuzzy Logic and Genetic Algorithms to Optimize Cost, Time and Quality in Modern Agriculture. Sustainability, 17(7), 2829. https://doi.org/10.3390/su17072829

Abstract

This study presents a novel approach to managing the cost–time–quality trade-off in modern agriculture by integrating fuzzy logic with a genetic algorithm. Agriculture faces significant challenges due to climate variability, economic constraints, and the increasing demand for sustainable practices. These challenges are compounded by uncertainties and risks inherent in agricultural processes, such as fluctuating yields, unpredictable costs, and inconsistent quality. The proposed model uses a fuzzy multi-objective optimization framework to address these uncertainties, incorporating expert opinions through the alpha-cut technique. By adjusting the level of uncertainty (represented by alpha values ranging from 0 to 1), the model can shift from pessimistic to optimistic scenarios, enabling strategic decision making. The genetic algorithm improves computational efficiency, making the model scalable for large agricultural projects. A case study was conducted to optimize resource allocation for rice cultivation in Asia, barley in Europe, wheat globally, and corn in the Americas, using data from 2003 to 2025. Key datasets, including the USDA Feed Grains Database and the Global Yield Gap Atlas, provided comprehensive insights into costs, yields, and quality across regions. The results demonstrate that the model effectively balances competing objectives while accounting for risks and opportunities. Under high uncertainty (α = 0\alpha = 0α = 0), the model focuses on risk mitigation, reflecting the impact of adverse climate conditions and market volatility. On the other hand, under more stable conditions and lower market volatility conditions (α = 1\alpha = 1α = 1), the solutions prioritize efficiency and sustainability. The genetic algorithm’s rapid convergence ensures that complex problems can be solved in minutes. This research highlights the potential of combining fuzzy logic and genetic algorithms to transform modern agriculture. By addressing uncertainties and optimizing key parameters, this approach paves the way for sustainable, resilient, and productive agricultural systems, contributing to global food security.

Source

Sustainability (Switzerland)

Volume

17

Issue

7

URI

https://doi.org/10.3390/su17072829
https://hdl.handle.net/11436/10693

Collections

  • İşletme Bölümü Koleksiyonu [131]
  • Scopus İndeksli Yayınlar Koleksiyonu [6071]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.