Basit öğe kaydını göster

dc.contributor.authorKartal, Burcu
dc.contributor.authorKaradağ, Haydar
dc.contributor.authorŞit, Ahmet
dc.contributor.authorŞit, Mustafa
dc.date.accessioned2025-07-28T12:45:01Z
dc.date.available2025-07-28T12:45:01Z
dc.date.issued2025en_US
dc.identifier.citationKartal, B., Karadağ, H., Şit, A., & Şit, M. (2025). Predicting the Environmental Impact of Financial Development with Machine Learning Algorithms. In Contributions to Finance and Accounting (pp. 53–69). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-83266-6_4en_US
dc.identifier.issn2730-6038
dc.identifier.urihttps://doi.org/10.1007/978-3-031-83266-6_4
dc.identifier.urihttps://hdl.handle.net/11436/10701
dc.description.abstractThis study aimed to determine the importance levels of variables affecting carbon emissions. Various machine learning algorithms were used and their performances were compared. Energy consumption, gross domestic product (GDP), interest rate, credit volume, inflation, and uncertainty index were used as independent variables. Model performances were evaluated using MAE, MSE, RMSE, and R2 metrics. Among the SVR, KNN, RF, ANN, XGBoost, and LightGBM algorithms, the Random Forest had the highest predictive power. The analysis revealed that the most influential variable on CO2 emissions is energy consumption, followed by GDP, interest rate, credit volume, inflation, and uncertainty index. The results emphasize optimizing energy consumption, increasing efficiency, and switching to renewable energy to reduce carbon emissions. To ensure environmental sustainability, the study recommends increasing technology incentives, prioritizing the use of renewable energy, and policymakers to develop interest and credit policies to reduce CO2 emissions. Thus, it states that economic growth can achieve a sustainable structure with environmentally friendly steps.en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCarbon emissionen_US
dc.subjectEnsemble learningen_US
dc.subjectınterest rateen_US
dc.subjectMachine learningen_US
dc.subjectSupervised learningen_US
dc.titlePredicting the environmental impact of financial development with machine learning algorithmsen_US
dc.typebookParten_US
dc.contributor.departmentRTEÜ, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümüen_US
dc.contributor.institutionauthorKartal, Burcu
dc.contributor.institutionauthorKaradağ, Haydar
dc.identifier.doi10.1007/978-3-031-83266-6_4en_US
dc.identifier.volumePart F249en_US
dc.identifier.startpage53en_US
dc.identifier.endpage69en_US
dc.relation.journalContributions to Finance and Accountingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster