• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractional nonlocal couple stress waves in magnetoelastic nanobeam using homotopy perturbation technique

View/Open

Full Text / Tam Metin (1.684Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2025

Author

Selvamani, Rajendran
Prabhakaran, Thangamuni
Yaylacı, Murat
Öztürk, Şevval
Uzun Yaylacı, Ecren

Metadata

Show full item record

Citation

Selvamani, R., Prabhakaran, T., Yaylacı, M., Öztürk, Ş., & Uzun Yaylacı, E. (2025). Fractional nonlocal couple stress waves in magnetoelastic nanobeam using homotopy perturbation technique. Acta Mechanica. https://doi.org/10.1007/s00707-025-04431-5

Abstract

This research investigates the mechanical behavior of nanomaterials under various physical conditions by integrating fractional-order viscoelasticity, nonlocal elasticity theory, and Maxwell’s electromagnetic relations. The study aims to accurately model the viscoelastic characteristics of nanomaterials using fractional calculus, specifically the Riemann–Liouville fractional derivative, to capture internal damping effects. The nonlocal elasticity theory is employed to account for nanoscale size effects by incorporating a nonlocal parameter that describes the influence of strain at different locations on the stress experienced at a given point. The governing equations for nanobeams subjected to magnetic fields are derived using Hamilton’s principle and further simplified through nonlocal couple stress theory. To solve the resulting complex differential equations, the homotopy perturbation technique (HPT) is applied, providing approximate analytical solutions. The study considers various boundary conditions, including simply supported (S–S), clamped-simply supported (C-S), and clamped–clamped (C–C), to ensure a comprehensive understanding of structural responses. The developed model is validated, by comparing the obtained results with benchmark results, and the outcomes are tabulated to confirm the effectiveness of the approach. These findings contribute to the development of advanced nanostructures, offering valuable insights for applications in nanotechnology and material science.

Source

Acta Mechanica

URI

https://doi.org/10.1007/s00707-025-04431-5
https://hdl.handle.net/11436/10742

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [269]
  • Scopus İndeksli Yayınlar Koleksiyonu [6118]
  • SUF, Su Ürünleri Yetiştiriciliği Bölümü Koleksiyonu [168]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.