• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Use of X means and C4.5 algorithms on lateral cephalometric measurements to identify craniofacial patterns

Göster/Aç

Full Text / Tam Metin (1.471Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2025

Yazar

Gonca, Merve
Özel, Mehmet Birol

Üst veri

Tüm öğe kaydını göster

Künye

Gonca, M., & Özel, M. B. (2025). Use of X means and C4.5 algorithms on lateral cephalometric measurements to identify craniofacial patterns. BMC Oral Health, 25(1), 1246. https://doi.org/10.1186/s12903-025-06651-6

Özet

Background: Craniofacial phenotyping is essential for individualized orthodontic diagnosis and treatment planning. Traditional skeletal classifications, such as the ANB angle, may oversimplify complex relationships among malocclusion types. Machine learning-based unsupervised methods may allow for more nuanced sub-phenotypic classification. Methods: A total of 330 pre-treatment LCRs (110 each from Class 1, Class 2, and Class 3 based on ANB (°)) were assessed in this study. The X-means method was used to create clusters. The relationship between the clusters and cephalometric variables was evaluated using the C4.5 decision tree. X-means clustering was employed to identify natural groupings within the dataset, followed by C4.5 decision tree analysis to determine key discriminative variables. After post-pruning, 288 LCRs were included in the final analysis. One-way ANOVA and Kruskal-Wallis tests were used to assess differences among clusters. Results: A total of four clusters were obtained using the X-means algorithm. Decision trees were used to identify the most discriminative variables among clusters. These clusters exhibited distinctive sagittal and vertical skeletal and dental features, particularly differences in individualized ANB, interincisal angle, and mandibular plane inclination. The root node in the second decision tree was the Individualized ANB (°). The interincisal angle was the main parameter determining the distinction between Clusters 0 and 1. The main parameter that determined the distinction between Cluster 2 and Cluster 3 was N-Go-Gn (°). Significant differences were found in all measurements except N-Go-Ar (°), FH/PP (°), and S-Ar-Go (°) angles (p < 0.05). Conclusion: The combination of X-means clustering and C4.5 decision tree analysis enabled the identification of four distinct craniofacial sub-phenotypes across all skeletal malocclusion classes. Four sub-phenotypic categorizations of all skeletal malocclusions were obtained. Mandibular plane inclination and interincisal angle were the most critical variables distinguishing these phenotypes. Assessing various forms of skeletal malocclusions may improve clinical outcomes and diagnostics by showing how different skeletal classes interact.

Kaynak

BMC Oral Health

Cilt

25

Sayı

1

Bağlantı

https://doi.org/10.1186/s12903-025-06651-6
https://hdl.handle.net/11436/10808

Koleksiyonlar

  • DŞHF, Klinik Bilimler Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6165]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.