dc.contributor.author | Kader, Serkan | |
dc.contributor.author | Güler, Bahadır Özgür | |
dc.date.accessioned | 2020-12-19T20:15:55Z | |
dc.date.available | 2020-12-19T20:15:55Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Kader, S. & Güler, B.Ö. (2013). On Suborbital Graphs for the Extended Modular Group Γ̂. Graphs and Combinatorics, 29(6), 1813-1825. https://doi.org/10.1007/s00373-012-1226-3 | en_US |
dc.identifier.issn | 0911-0119 | |
dc.identifier.uri | https://doi.org/10.1007/s00373-012-1226-3 | |
dc.identifier.uri | https://hdl.handle.net/11436/4080 | |
dc.description.abstract | In this paper, we show that the extended modular group ?? acts on ?? transitively and imprimitively. Then the number of orbits of ??0(N) on ?? is calculated and compared with the number of orbits of ?0(N) on ??. Especially, we obtain the graphs ?n,N of ??0(N) on ??, for each N ? ? and each unit u ? UN, then we determine the suborbital graph F?u,N. We also give the edge conditions in ?u,N and the necessary and sufficient conditions for a circuit to be triangle in F?u,N. © 2012 Springer. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Imprimitive action | en_US |
dc.subject | Modular group | en_US |
dc.subject | Suborbital graphs | en_US |
dc.title | On suborbital graphs for the extended modular group Γ̂ | en_US |
dc.type | article | en_US |
dc.contributor.department | RTEÜ, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.contributor.institutionauthor | Güler, Bahadır Özgür | |
dc.identifier.doi | 10.1007/s00373-012-1226-3 | |
dc.identifier.volume | 29 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 1813 | en_US |
dc.identifier.endpage | 1825 | en_US |
dc.relation.journal | Graphs and Combinatorics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |