• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gorilla troops optimization-based load frequency control in PV-thermal power system

Göster/Aç

Full Text / Tam Metin (2.833Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2023

Yazar

Can, Özay
Ayas, Mustafa Şinasi

Üst veri

Tüm öğe kaydını göster

Künye

Can, Ö. & Ayas, M.S. (2023). Gorilla troops optimization-based load frequency control in PV-thermal power system. Neural Computing and Applications, 2023. http://doi.org/10.1007/s00521-023-09273-7

Özet

The mismatch between generated power and load demand often leads to undesirable fluctuations in the frequency and tie-line power change of a power system. To mitigate this problem, the implementation of a control process known as load frequency control (LFC) becomes essential. The objective of this study is to optimize the parameters of the LFC controller for a two-area power system consisting of a reheat thermal generator and a photovoltaic power plant. A proportional–integral (PI) controller is employed to damp the oscillations that occur in the frequency and tie-line power change. A newly developed meta-heuristic optimization technique called gorilla troops optimization (GTO) is used for the first time to optimally tune the parameters of the PI controller and improve its performance. The performance of the GTO optimization technique is analyzed under varying load demands, parameter variations, and nonlinearities. Comparative evaluations with different optimization algorithms are performed. The obtained results demonstrate that the proposed GTO-PI controller outperforms the other optimization techniques in terms of reducing the overshoot values in the system frequency and tie-line power change, as well as achieving faster settling times for these oscillations. This research highlights the effectiveness of the GTO-PI controller in LFC, providing improved performance over alternative algorithms. The results underscore the significance of utilizing meta-heuristic optimization techniques for optimal parameter tuning in power system control applications.

Kaynak

Neural Computing and Applications

Bağlantı

http://doi.org/10.1007/s00521-023-09273-7
https://hdl.handle.net/11436/8707

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [6032]
  • Teknik Bilimler Meslek Yüksekokulu Koleksiyonu [202]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.