• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gorilla troops optimization-based load frequency control in PV-thermal power system

View/Open

Full Text / Tam Metin (2.833Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Can, Özay
Ayas, Mustafa Şinasi

Metadata

Show full item record

Citation

Can, Ö. & Ayas, M.S. (2023). Gorilla troops optimization-based load frequency control in PV-thermal power system. Neural Computing and Applications, 2023. http://doi.org/10.1007/s00521-023-09273-7

Abstract

The mismatch between generated power and load demand often leads to undesirable fluctuations in the frequency and tie-line power change of a power system. To mitigate this problem, the implementation of a control process known as load frequency control (LFC) becomes essential. The objective of this study is to optimize the parameters of the LFC controller for a two-area power system consisting of a reheat thermal generator and a photovoltaic power plant. A proportional–integral (PI) controller is employed to damp the oscillations that occur in the frequency and tie-line power change. A newly developed meta-heuristic optimization technique called gorilla troops optimization (GTO) is used for the first time to optimally tune the parameters of the PI controller and improve its performance. The performance of the GTO optimization technique is analyzed under varying load demands, parameter variations, and nonlinearities. Comparative evaluations with different optimization algorithms are performed. The obtained results demonstrate that the proposed GTO-PI controller outperforms the other optimization techniques in terms of reducing the overshoot values in the system frequency and tie-line power change, as well as achieving faster settling times for these oscillations. This research highlights the effectiveness of the GTO-PI controller in LFC, providing improved performance over alternative algorithms. The results underscore the significance of utilizing meta-heuristic optimization techniques for optimal parameter tuning in power system control applications.

Source

Neural Computing and Applications

URI

http://doi.org/10.1007/s00521-023-09273-7
https://hdl.handle.net/11436/8707

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [6032]
  • Teknik Bilimler Meslek Yüksekokulu Koleksiyonu [202]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.