Basit öğe kaydını göster

dc.contributor.authorKurt-Bayrakdar, Sevda
dc.contributor.authorBayrakdar, İbrahim Şevki
dc.contributor.authorYavuz, Muhammet Burak
dc.contributor.authorSali, Nichal
dc.contributor.authorÇelik, Özer
dc.contributor.authorKöse, Oğuz
dc.contributor.authorUzun Saylan, Bilge Cansu
dc.contributor.authorKuleli, Batuhan
dc.contributor.authorJagtap, Rohan
dc.contributor.authorOrhan, Kaan
dc.date.accessioned2024-02-08T05:38:40Z
dc.date.available2024-02-08T05:38:40Z
dc.date.issued2024en_US
dc.identifier.citationKurt-Bayrakdar, S., Bayrakdar, İ. Ş., Yavuz, M. B., Sali, N., Çelik, Ö., Köse, O., Uzun Saylan, B. C., Kuleli, B., Jagtap, R., & Orhan, K. (2024). Detection of periodontal bone loss patterns and furcation defects from panoramic radiographs using deep learning algorithm: a retrospective study. BMC oral health, 24(1), 155. https://doi.org/10.1186/s12903-024-03896-5en_US
dc.identifier.issn1472-6831
dc.identifier.urihttps://doi.org/10.1186/s12903-024-03896-5
dc.identifier.urihttps://hdl.handle.net/11436/8728
dc.description.abstractBackground: This retrospective study aimed to develop a deep learning algorithm for the interpretation of panoramic radiographs and to examine the performance of this algorithm in the detection of periodontal bone losses and bone loss patterns. Methods: A total of 1121 panoramic radiographs were used in this study. Bone losses in the maxilla and mandibula (total alveolar bone loss) (n = 2251), interdental bone losses (n = 25303), and furcation defects (n = 2815) were labeled using the segmentation method. In addition, interdental bone losses were divided into horizontal (n = 21839) and vertical (n = 3464) bone losses according to the defect patterns. A Convolutional Neural Network (CNN)-based artificial intelligence (AI) system was developed using U-Net architecture. The performance of the deep learning algorithm was statistically evaluated by the confusion matrix and ROC curve analysis. Results: The system showed the highest diagnostic performance in the detection of total alveolar bone losses (AUC = 0.951) and the lowest in the detection of vertical bone losses (AUC = 0.733). The sensitivity, precision, F1 score, accuracy, and AUC values were found as 1, 0.995, 0.997, 0.994, 0.951 for total alveolar bone loss; found as 0.947, 0.939, 0.943, 0.892, 0.910 for horizontal bone losses; found as 0.558, 0.846, 0.673, 0.506, 0.733 for vertical bone losses and found as 0.892, 0.933, 0.912, 0.837, 0.868 for furcation defects (respectively). Conclusions: AI systems offer promising results in determining periodontal bone loss patterns and furcation defects from dental radiographs. This suggests that CNN algorithms can also be used to provide more detailed information such as automatic determination of periodontal disease severity and treatment planning in various dental radiographs.en_US
dc.language.isoengen_US
dc.publisherSpringer Linken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDentistryen_US
dc.subjectPanoramic radiographyen_US
dc.subjectPeriodontitisen_US
dc.titleDetection of periodontal bone loss patterns and furcation defects from panoramic radiographs using deep learning algorithm: a retrospective studyen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Diş Hekimliği Fakültesi, Klinik Bilimler Bölümüen_US
dc.contributor.institutionauthorKöse, Oğuz
dc.identifier.doi10.1186/s12903-024-03896-5en_US
dc.identifier.volume24en_US
dc.identifier.issue1en_US
dc.identifier.startpage155en_US
dc.relation.journalBMC Oral Healthen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster