dc.contributor.author | Yılmaz, Övgü Gürel | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Turan, Mehmet | |
dc.date.accessioned | 2024-06-11T07:02:50Z | |
dc.date.available | 2024-06-11T07:02:50Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Yılmaz, Ö.G., Ostrovska, S. & Turan, M. (2024). Shape-preserving properties of the limit q-Durrmeyer operator. Journal of Mathematical Analysis and Applications, 539(1P2), 128463. https://doi.org/10.1016/j.jmaa.2024.128463 | en_US |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2024.128463 | |
dc.identifier.uri | https://hdl.handle.net/11436/9070 | |
dc.description.abstract | The present work aims to establish the shape-preserving properties of the limit q-Durrmeyer operator, Dq for 0<q<1. It has been proved that the operator is monotonicity- and convexity-preserving. What is more, it maps a function m-convex along {qj}j=0∞ to a function m-convex along any sequence {xqj}j=0∞, x∈(0,1). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | q-Bernstein operator | en_US |
dc.subject | q-differences | en_US |
dc.subject | q-Durrmeyer operator | en_US |
dc.subject | Shape-preserving property | en_US |
dc.title | Shape-preserving properties of the limit q-Durrmeyer operator | en_US |
dc.type | article | en_US |
dc.contributor.department | RTEÜ, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.contributor.institutionauthor | Yılmaz, Övgü Gürel | |
dc.identifier.doi | 10.1016/j.jmaa.2024.128463 | en_US |
dc.identifier.volume | 539 | en_US |
dc.identifier.issue | 1P2 | en_US |
dc.identifier.startpage | 128463 | en_US |
dc.relation.journal | Journal of Mathematical Analysis and Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |