Basit öğe kaydını göster

dc.contributor.authorBeşer, Büşra
dc.contributor.authorReis, Tuğba
dc.contributor.authorBerber, Merve Nur
dc.contributor.authorTopaloğlu, Edanur
dc.contributor.authorGüngör, Esra
dc.contributor.authorKılıç, Münevver Çoruh
dc.contributor.authorDuman, Sacide
dc.contributor.authorÇelik, Özer
dc.contributor.authorKuran, Alican
dc.contributor.authorBayrakdar, İbrahim Şevki
dc.date.accessioned2024-07-17T06:25:14Z
dc.date.available2024-07-17T06:25:14Z
dc.date.issued2024en_US
dc.identifier.citationBeser, B., Reis, T., Berber, M. N., Topaloglu, E., Gungor, E., Kılıc, M. C., Duman, S., Çelik, Ö., Kuran, A., & Bayrakdar, I. S. (2024). YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition. BMC medical imaging, 24(1), 172. https://doi.org/10.1186/s12880-024-01338-wen_US
dc.identifier.issn1471-2342
dc.identifier.urihttps://doi.org/10.1186/s12880-024-01338-w
dc.identifier.urihttps://hdl.handle.net/11436/9168
dc.description.abstractObjectives: In the interpretation of panoramic radiographs (PRs), the identification and numbering of teeth is an important part of the correct diagnosis. This study evaluates the effectiveness of YOLO-v5 in the automatic detection, segmentation, and numbering of deciduous and permanent teeth in mixed dentition pediatric patients based on PRs. Methods: A total of 3854 mixed pediatric patients PRs were labelled for deciduous and permanent teeth using the CranioCatch labeling program. The dataset was divided into three subsets: training (n = 3093, 80% of the total), validation (n = 387, 10% of the total) and test (n = 385, 10% of the total). An artificial intelligence (AI) algorithm using YOLO-v5 models were developed. Results: The sensitivity, precision, F-1 score, and mean average precision-0.5 (mAP-0.5) values were 0.99, 0.99, 0.99, and 0.98 respectively, to teeth detection. The sensitivity, precision, F-1 score, and mAP-0.5 values were 0.98, 0.98, 0.98, and 0.98, respectively, to teeth segmentation. Conclusions: YOLO-v5 based models can have the potential to detect and enable the accurate segmentation of deciduous and permanent teeth using PRs of pediatric patients with mixed dentition.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectPanoramic radiographsen_US
dc.subjectPediatric dentistryen_US
dc.subjectTooth enumerationen_US
dc.titleYOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentitionen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Diş Hekimliği Fakültesi, Klinik Bilimler Bölümüen_US
dc.contributor.institutionauthorBeşer, Büşra
dc.contributor.institutionauthorBerber, Merve Nur
dc.identifier.doi10.1186/s12880-024-01338-wen_US
dc.identifier.volume24en_US
dc.identifier.issue1en_US
dc.identifier.startpage172en_US
dc.relation.journalBMC Medical Imagingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster