dc.contributor.author | Beşer, Büşra | |
dc.contributor.author | Reis, Tuğba | |
dc.contributor.author | Berber, Merve Nur | |
dc.contributor.author | Topaloğlu, Edanur | |
dc.contributor.author | Güngör, Esra | |
dc.contributor.author | Kılıç, Münevver Çoruh | |
dc.contributor.author | Duman, Sacide | |
dc.contributor.author | Çelik, Özer | |
dc.contributor.author | Kuran, Alican | |
dc.contributor.author | Bayrakdar, İbrahim Şevki | |
dc.date.accessioned | 2024-07-17T06:25:14Z | |
dc.date.available | 2024-07-17T06:25:14Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Beser, B., Reis, T., Berber, M. N., Topaloglu, E., Gungor, E., Kılıc, M. C., Duman, S., Çelik, Ö., Kuran, A., & Bayrakdar, I. S. (2024). YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition. BMC medical imaging, 24(1), 172. https://doi.org/10.1186/s12880-024-01338-w | en_US |
dc.identifier.issn | 1471-2342 | |
dc.identifier.uri | https://doi.org/10.1186/s12880-024-01338-w | |
dc.identifier.uri | https://hdl.handle.net/11436/9168 | |
dc.description.abstract | Objectives: In the interpretation of panoramic radiographs (PRs), the identification and numbering of teeth is an important part of the correct diagnosis. This study evaluates the effectiveness of YOLO-v5 in the automatic detection, segmentation, and numbering of deciduous and permanent teeth in mixed dentition pediatric patients based on PRs. Methods: A total of 3854 mixed pediatric patients PRs were labelled for deciduous and permanent teeth using the CranioCatch labeling program. The dataset was divided into three subsets: training (n = 3093, 80% of the total), validation (n = 387, 10% of the total) and test (n = 385, 10% of the total). An artificial intelligence (AI) algorithm using YOLO-v5 models were developed. Results: The sensitivity, precision, F-1 score, and mean average precision-0.5 (mAP-0.5) values were 0.99, 0.99, 0.99, and 0.98 respectively, to teeth detection. The sensitivity, precision, F-1 score, and mAP-0.5 values were 0.98, 0.98, 0.98, and 0.98, respectively, to teeth segmentation. Conclusions: YOLO-v5 based models can have the potential to detect and enable the accurate segmentation of deciduous and permanent teeth using PRs of pediatric patients with mixed dentition. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Panoramic radiographs | en_US |
dc.subject | Pediatric dentistry | en_US |
dc.subject | Tooth enumeration | en_US |
dc.title | YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition | en_US |
dc.type | article | en_US |
dc.contributor.department | RTEÜ, Diş Hekimliği Fakültesi, Klinik Bilimler Bölümü | en_US |
dc.contributor.institutionauthor | Beşer, Büşra | |
dc.contributor.institutionauthor | Berber, Merve Nur | |
dc.identifier.doi | 10.1186/s12880-024-01338-w | en_US |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 172 | en_US |
dc.relation.journal | BMC Medical Imaging | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |