Basit öğe kaydını göster

dc.contributor.authorAkgül, Yasin
dc.contributor.authorStojanovska, Elena
dc.contributor.authorÇalışır, Mehmet Durmuş
dc.contributor.authorPolat, Yusuf
dc.contributor.authorKılıç, Ali
dc.date.accessioned2024-07-17T06:55:17Z
dc.date.available2024-07-17T06:55:17Z
dc.date.issued2024en_US
dc.identifier.citationAkgul, Y., Stojanovska, E., Çalışır, M.D., Polat, Y. & Kılıç, A. (2024). Centrifugally spun hydroxyapatite/carbon composite nanofiber scaffolds for bone tissue engineering. Functional Composites and Structures, 6(3), 035002. http://doi.org/10.1088/2631-6331/ad5b49en_US
dc.identifier.issn2631-6331
dc.identifier.urihttp://doi.org/10.1088/2631-6331/ad5b49
dc.identifier.urihttps://hdl.handle.net/11436/9172
dc.description.abstractIn recent years, advancements in tissue engineering have demonstrated the potential to expedite bone matrix formation, leading to shorter recovery times and decreased clinical challenges compared to conventional methods. Therefore, this study aims to develop composite carbon nanofibers (CNFs) integrated with nano-hydroxyapatite (nHA) particles as scaffolds for bone tissue engineering applications. A key strategy in achieving this objective involves harnessing nanofibrous structures, which offer a high surface area, coupled with nHA particles expected to accelerate bone regeneration and enhance biological activity. To realize this, polyacrylonitrile (PAN)/nHA nanofibers were fabricated using the centrifugal spinning (C-Spin) technique and subsequently carbonized to yield CNF/nHA composite structures. Scanning Electron Microscopy (SEM) confirmed C-Spin as a suitable method for PAN and CNF nanofiber production, with nHA particles uniformly dispersed throughout the nanofibrous structure. Carbonization resulted in reduced fiber diameter due to thermal decomposition and shrinkage of PAN molecules during the process. Furthermore, the incorporation of nHA particles into PAN lowered the stabilization temperature (by 5 °C-20 °C). Tensile tests revealed that PAN samples experienced an approximately 80% increase in ultimate tensile strength and a 187% increase in modulus with a 5 wt.% nHA loading. However, following carbonization, CNF samples exhibited a 50% decrease in strength compared to PAN samples. Additionally, the addition of nHA into CNF improved the graphitic structure. The incorporation of nHA particles into the spinning solution represents a viable strategy for enhancing CNF bioactivity.en_US
dc.language.isoengen_US
dc.publisherInstitute of Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBioactivityen_US
dc.subjectCarbon nanofiberen_US
dc.subjectCentrifugal spinningen_US
dc.subjectHydroxyapatiteen_US
dc.titleCentrifugally spun hydroxyapatite/carbon composite nanofiber scaffolds for bone tissue engineeringen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorÇalışır, Mehmet Durmuş
dc.identifier.doi10.1088/2631-6331/ad5b49en_US
dc.identifier.volume6en_US
dc.identifier.issue3en_US
dc.identifier.startpage035002en_US
dc.relation.journalFunctional Composites and Structuresen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster