• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial intelligence approaches for accurate assessment of insulator cleanliness in high-voltage electrical systems

Göster/Aç

Tam Metin / Full Text (1.368Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2024

Yazar

Ergün, Ebru

Üst veri

Tüm öğe kaydını göster

Künye

Ergün, E. (2024). Artificial intelligence approaches for accurate assessment of insulator cleanliness in high-voltage electrical systems. Electrical Engineering. https://doi.org/10.1007/s00202-024-02691-3

Özet

String insulators play a critical role in electrical grids by isolating high voltage and preventing energy dispersion through the tower structure. Maintaining the cleanliness of these insulators is essential to ensure optimum performance and avoid malfunctions. Traditionally, human visual inspection has been used to assess cleaning needs, which can be error prone and pose a safety risk to personnel working near electrical equipment. Accurate detection of insulator condition is essential to prevent equipment failure. In this study, we used a comprehensive dataset of insulator images generated in Brazil using computer-aided design software and a game engine. The dataset consists of 14,424 images, categorized into those affected by salt, soot, and other contaminants, and clean insulators. We extracted key features from these images using VggNet and GoogleNet and classified them using a random forest algorithm, achieving a classification accuracy of 98.99%. This represents a 0.99% improvement over previous studies using the same dataset. Our research makes a significant contribution to the field by providing a more effective method for isolator management. By using advanced artificial intelligence models for accurate classification and real-time analysis, our approach improves the efficiency and reliability of insulator condition monitoring. This advance not only improves the detection of various insulator conditions but also reduces the reliance on manual inspections, which are often inaccurate and inefficient.

Kaynak

Electrical Engineering

Bağlantı

https://doi.org/10.1007/s00202-024-02691-3
https://hdl.handle.net/11436/9314

Koleksiyonlar

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.