Basit öğe kaydını göster

dc.contributor.authorŞengül, Süleyman
dc.contributor.authorBekiryazıcı, Zafer
dc.contributor.authorMerdan, Mehmet
dc.date.accessioned2024-10-14T08:07:04Z
dc.date.available2024-10-14T08:07:04Z
dc.date.issued2024en_US
dc.identifier.citationŞengül, S., Bekiryazici, Z., & Merdan, M. (2024). Approximate Solutions of Fractional Differential Equations Using Optimal q-Homotopy Analysis Method: A Case Study of Abel Differential Equations. Fractal and Fractional, 8(9), 533. https://doi.org/10.3390/fractalfract8090533en_US
dc.identifier.issn2504-3110
dc.identifier.urihttps://doi.org/10.3390/fractalfract8090533
dc.identifier.urihttps://hdl.handle.net/11436/9586
dc.description.abstractIn this study, the optimal q-Homotopy Analysis Method (optimal q-HAM) has been used to investigate fractional Abel differential equations. This article is designed as a case study, where several forms of Abel equations, containing Bernoulli and Riccati equations, are given with ordinary derivatives and fractional derivatives in the Caputo sense to present the application of the method. The optimal q-HAM is an improved version of the Homotopy Analysis Method (HAM) and its modification q-HAM and focuses on finding the optimal value of the convergence parameters for a better approximation. Numerical applications are given where optimal values of the convergence control parameters are found. Additionally, the correspondence of the approximate solutions obtained for these optimal values and the exact or numerical solutions are shown with figures and tables. The results show that the optimal q-HAM improves the convergence of the approximate solutions obtained with the q-HAM. Approximate solutions obtained with the fractional Differential Transform Method, q-HAM and predictor–corrector method are also used to highlight the superiority of the optimal q-HAM. Analysis of the results from various methods points out that optimal q-HAM is a strong tool for the analysis of the approximate analytical solution in Abel-type differential equations. This approach can be used to analyze other fractional differential equations arising in mathematical investigations.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAbel differential equationen_US
dc.subjectCaputo fractional derivativeen_US
dc.subjectFractional differential transform methoden_US
dc.subjectOptimal q-homotopy analysis methoden_US
dc.titleApproximate solutions of fractional differential equations using optimal q-homotopy analysis method: a case study of abel differential equationsen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorŞengül, Süleyman
dc.contributor.institutionauthorBekiryazıcı, Zafer
dc.identifier.doi10.3390/fractalfract8090533en_US
dc.identifier.volume8en_US
dc.identifier.issue9en_US
dc.identifier.startpage533en_US
dc.relation.journalFractal and Fractionalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster