• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing bone metastasis prediction in prostate cancer using quantitative mpMRI features, ISUP grade and PSA density: a machine learning approach

Göster/Aç

Tam Metin / Full Text (1.213Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2024

Yazar

Gündoğdu, Hasan
Panç, Kemal
Sekmen, Sümeyye
Er, Hüseyin
Gürün, Enes

Üst veri

Tüm öğe kaydını göster

Künye

Gündoğdu, H., Panç, K., Sekmen, S., Er, H., & Gürün, E. (2024). Enhancing bone metastasis prediction in prostate cancer using quantitative mpMRI features, ISUP grade and PSA density: a machine learning approach. Abdominal Radiology. https://doi.org/10.1007/s00261-024-04667-0

Özet

Purpose: Bone metastasis is a critical complication in prostate cancer, significantly impacting patient prognosis and quality of life. This study aims to enhance bone metastasis prediction using machine learning (ML) techniques by integrating dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion features, International Society of Urological Pathology (ISUP) grade, and prostate-specific antigen (PSA) density. Materials and methods: A retrospective analysis was conducted on 122 patients with histopathologically confirmed prostate cancer who underwent multiparametric prostate magnetic resonance imaging (mpMRI). Quantitative mpMRI features, PSA density, and ISUP grades were extracted and normalized. The dataset was balanced using oversampling and divided into training (70%) and test (30%) sets. Various ML models were developed and evaluated using area under the curve (AUC) metrics. Results: Bone metastases were present in 26 patients (21.3%) at diagnosis. IAUGC and MaxSlope showed a statistically significant association with bone metastasis (p = 0.035, p = 0.050 respectively). The optimal PSA density cut-off value of 0.24 yielded a sensitivity of 0.88, specificity of 0.60, and AUC of 0.77. Machine learning models were developed using the dataset created with IAUGC, MaxSlope, ISUP grade, and PSA density values. Among the ML models, XGBoost demonstrated superior performance with validation and test AUCs of 91.5% and 92.6%, respectively, along with high precision (93.3%) and recall (93.1%). Conclusion: Integrating quantitative mpMRI features, ISUP grade, and PSA density through machine learning algorithms, particularly XGBoost, significantly improves the accuracy of bone metastasis prediction in prostate cancer patients. This approach can potentially reduce the need for additional imaging modalities and associated radiation exposure. Graphical abstract: (Figure presented.)

Kaynak

Abdominal Radiology

Bağlantı

https://doi.org/10.1007/s00261-024-04667-0
https://hdl.handle.net/11436/9808

Koleksiyonlar

  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1569]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.