Basit öğe kaydını göster

dc.contributor.authorÇatal, Muhammed İkbal
dc.contributor.authorÇelik, Şenol
dc.contributor.authorBakoğlu, Adil
dc.date.accessioned2025-01-10T12:06:53Z
dc.date.available2025-01-10T12:06:53Z
dc.date.issued2024en_US
dc.identifier.citationÇatal, M. İ., Çelik, Ş., & Bakoğlu, A. (2024). Investigation of factors affecting fresh herbage yield in pea (Pisum arvense L.) using data mining algorithms. Frontiers in Plant Science, 15, 1482723. https://doi.org/10.3389/fpls.2024.1482723en_US
dc.identifier.issn1664-462X
dc.identifier.urihttps://doi.org/10.3389/fpls.2024.1482723
dc.identifier.urihttps://hdl.handle.net/11436/9853
dc.description.abstractThis study was carried out to determine the factors affecting the wet grass yield of pea plants grown in Turkey. Wet grass yield was predicted using parameters such as genotype, crude protein, crude ash, acid detergent fiber (ADF), and neutral detergent fiber (NDF) with some data mining algorithms. These techniques provided easily interpretable data trees and precise cutoff values. This led to a comparison of the predictive abilities of data mining methods, including multivariate adaptive regression spline (MARS), Chi-square automatic interaction detection (CHAID), classification and regression tree (CART), and artificial neural network (ANN). To test the compatibility of the data mining algorithms, seven goodness-of-fit criteria were used. The predictive abilities of the fitted models were assessed using model fit statistics such as the coefficient of determination (R2), adjusted R2, root mean square error (RMSE), mean absolute percentage error (MAPE), standard deviation ratio (SD ratio), Akaike information criterion (AIC), and corrected Akaike information criterion (AICc). With the greatest R2 and adjusted R2 values (0.998 and 0.986) and the lowest values of RMSE, MAPE, SD ratio, AIC, and AICc (10.499, 0.7365, 0.047, 268, and 688, respectively), the MARS method was determined to be the best model for quantifying plant fresh herbage yield. In estimating the fresh herbage production of the pea plant, the results showed that the MARS method was the most appropriate model and a good substitute for other data mining techniques.en_US
dc.language.isoengen_US
dc.publisherFrontiers Media SAen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectANNen_US
dc.subjectCARTen_US
dc.subjectCHAIDen_US
dc.subjectMARS algorithmen_US
dc.subjectPEAen_US
dc.titleInvestigation of factors affecting fresh herbage yield in pea (Pisum arvense L.) using data mining algorithmsen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Ziraat Fakültesi, Bahçe Bitkileri Bölümüen_US
dc.contributor.institutionauthorÇatal, Muhammed İkbal
dc.contributor.institutionauthorBakoğlu, Adil
dc.identifier.doi10.3389/fpls.2024.1482723en_US
dc.identifier.volume15en_US
dc.identifier.issue1482723en_US
dc.relation.journalFrontiers in Plant Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster