• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of different drying methods on Camellia sinensis: Investigation of quality parameters and drying kinetics using artificial neural networks

Göster/Aç

Full Text / Tam Metin (11.05Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2025

Yazar

Topal, Muhammed Emin
Şahin, Birol

Üst veri

Tüm öğe kaydını göster

Künye

Topal, M. E., & Şahi̇n, B. (2025). Effects of different drying methods on Camellia sinensis: Investigation of quality parameters and drying kinetics using artificial neural networks. LWT, 229, 118172. https://doi.org/10.1016/j.lwt.2025.118172

Özet

This study aimed to compare the drying kinetics and quality outcomes of tea leaves subjected to four different drying methods—freeze drying (FD), hot air drying (HAD), infrared drying (ID), and microwave drying (MWD). Six thin-layer drying models (Alibas, Demir et al. Henderson & Pabis, Improved Midilli-Kucuk, Logarithmic, and Weibull) were fitted to the experimental data. Artificial neural network (ANN) models were also developed to predict the dimensionless moisture ratio (MR) using drying time and process parameters as inputs. The ANN model showed high prediction performance, with R2 values reaching up to 0.9999. In addition, the ANN model achieved strong generalization performance, with Rc2 = 0.9967, Rp2 = 0.9132, and RPD = 3.3936, confirming its excellent predictive ability. Quality assessments revealed that FD preserved the highest antioxidant capacity (up to 94.7 ± 0.1 %), followed by MWD, HAD, and ID. The lowest water activity, enhancing shelf life, was observed in FD (0.29 ± 0.01 to 0.34 ± 0.01), while MWD showed the highest (0.41 ± 0.04 to 0.64 ± 0.01). Color analysis indicated the least change in FD and the most in ID. Overall, FD produced the highest quality tea, while MWD offered faster drying. ANN models effectively captured nonlinear drying behaviors. This integrated modeling and evaluation approach can support future optimization and quality control strategies in tea drying processes. Although the unified ANN yielded high accuracy (ALL R = 0.9999), model generalization is presently limited to laboratory-scale trials on a single tea cultivar. Further validation on industrial dryers and diverse leaf grades is required, and the ‘black-box’ nature of ANNs complicates direct physico-chemical interpretation. This is the first known study to integrate both artificial neural network (ANN) and mathematical modeling approaches to comprehensively assess the drying kinetics and quality attributes of tea leaves subjected to four different drying methods.

Kaynak

LWT

Cilt

229

Bağlantı

https://doi.org/10.1016/j.lwt.2025.118172
https://hdl.handle.net/11436/10708

Koleksiyonlar

  • Makine Mühendisliği Bölümü Koleksiyonu [360]
  • Scopus İndeksli Yayınlar Koleksiyonu [6165]
  • WoS İndeksli Yayınlar Koleksiyonu [5350]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.