• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

The anticipation of compressive strength of geopolymer mortars with tree-based machine learning models: effect of training-testing ratios

Göster/Aç

Full Text / Tam Metin (5.166Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2025

Yazar

Çakmak, Talip
Ustabaş, İlker

Üst veri

Tüm öğe kaydını göster

Künye

Cakmak, T., & Ustabas, İ. (2025). The anticipation of compressive strength of geopolymer mortars with tree-based machine learning models: effect of training-testing ratios. Asian Journal of Civil Engineering, 26(6), 2657-2670. https://doi.org/10.1007/s42107-025-01336-5

Özet

Concrete, produced from cement, is the best greatly utilised building material. However, greenhouse gas discharges from cement preparation and consumption cause significant damage to the environment. Geopolymer production, which is one of the important alternatives, plays an important role in preventing this problem. In this study, tree-based machine learning (ML) algorithms such as Gradient Boosting Regression (GBR), Decision Tree (DT), Extremely Randomized Tree (ET), and Random Forest (RF) were utilized to anticipate the compressive strength (CS) of silica fume substituted obsidian-based two-component geopolymer mortars with different alkali activator properties. These ML algorithms were implemented using different train-test ratios (0.6 − 0.4, 0.7 − 0.3, 0.8 − 0.2, 0.9 − 0.1). The prediction and generalization performances of the applied models were measured by applying different statistical metrics like R2, MAE, MAPE, MSE and RMSE. For the prediction of compressive strength, the GBR algorithm showed a better prediction performance than the other algorithms, with an R2 value of 0.972. The RF algorithm showed the most consistent and balanced prediction performance. Significant decreases in R2adjusted values were observed as the training rate increased. This is due to the tendency of the models to overlearn as the training rate increases. The results show that the models perform best at a training rate of 70%, and the generalization execution of the models reduces importantly as the training rate augments. The machine learning method applied to the forecasting of the CS of geopolymer mortars provides significant benefits to engineering applications due to its contributions in terms of workload and time savings.

Kaynak

Asian Journal of Civil Engineering

Cilt

26

Sayı

6

Bağlantı

https://doi.org/10.1007/s42107-025-01336-5
https://hdl.handle.net/11436/10943

Koleksiyonlar

  • İnşaat Mühendisliği Bölümü Koleksiyonu [288]
  • Scopus İndeksli Yayınlar Koleksiyonu [6292]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.