Growth of Cu2ZnSnS4 (CZTS) thin films using short sulfurization periods
Künye
Olgar, M.A., Tomakin, M., Küçükömeroğlu, T. & Bacaksız, E. (2019). Growth of Cu2ZnSnS4 (CZTS) thin films using short sulfurization periods. Materials Research Express, 6(5), 056401. https://doi.org/10.1088/2053-1591/aaff78Özet
In this study CZTS thin films were grown by a two-stage process that involved sequential sputter deposition of metallic Cu, Zn, and Sn layers on Mo coated glass substrates followed by RTP annealing at 530 and 560 degrees C for various dwell times (1, 60, and 180 s). CZTS thin films obtained by reaction at different sulfurization temperatures and reaction times were characterized employing XRD, Raman spectroscopy, SEM, EDX, and photoluminescence. It was observed that it is possible to obtain Cu-poor and Zn-rich CZTS thin films with short dwell time of reactions. XRD pattern and Raman spectra of the films showed formation of kesterite CZTS structure and some secondary phases such as CuS, SnS, SnS2 . the full-width-at-half-maximum (FWHM) values extracted from the (112) diffraction peaks of the CZTS thin films showed that extension of the sulfurization time provides better crystalline quality except for the CZTS560-60 thin film. SEM surface microstructure of the films displayed non-uniform, dense, and polycrystalline structure. the optical band gap of the films as determined by photoluminescence was found to be about 1.36-1.38 eV.