• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced efficiency of CdS/P3HT hybrid solar cells via interfacial modification

Thumbnail

View/Open

Full Text / Tam Metin (1.963Mb)

Access

info:eu-repo/semantics/openAccess

Date

2019

Author

Yılmaz, Salih
Polat, İsmail
Tomakin, Murat
Ünverdi, Ahmet
Bacaksız, Emin

Metadata

Show full item record

Citation

Yılmaz, S., Polat, İ., Tomakin, M., Ünverdi, A. & Bacaksız, E. (2019). Enhanced efficiency of CdS/P3HT hybrid solar cells via interfacial modification. Turkish Journal of Physics, 43(1), 116-125. https://doi.org/10.3906/fiz-1810-21

Abstract

The present paper examines the effects of surface modification of CdS with diverse dyes on fabricated CdS-based hybrid solar cells. the X-ray diffraction results showed that CdS thin films had a hexagonal phase with a preferred orientation along the (101) plane. Scanning electron microscopy indicated that the CdS specimen was composed of a granular structure while a P3HT layer was formed from tiny grains. Band gaps of the CdS thin films and the P3HT layer were 2.45 eV and 1.98 eV, respectively. the absorption spectra showed that different dye loading caused an increase in the absorbance of CdS thin films in the wavelength range of 400-650 nm. the photoluminescence of the CdS/P3HT structure including various dyes was lower than that of the pristine one, implying that efficient charge separation was achieved upon surface modification. Current density-voltage curves showed that the ITO/CdS/N719/Ag hybrid solar cell exhibited the best overall efficiency of 0.082%, which can be attributed to improvements in both short circuit current density (J(sc)) and open circuit voltage (V-oc). These enhancements can be attributed to the creation of better interfacial contact between CdS and P3HT layers after dye loading.

Source

Turkish Journal of Physics

Volume

43

Issue

1

URI

https://doi.org/10.3906/fiz-1810-21
https://hdl.handle.net/11436/1676

Collections

  • FEF, Fizik Bölümü Koleksiyonu [355]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.