• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Co-overexpression of AVP1 and PP2A-C5 in Arabidopsis makes plants tolerant to multiple abiotic stresses

Thumbnail

View/Open

Full Text / Tam Metin (4.674Mb)

Access

info:eu-repo/semantics/openAccess

Date

2018

Author

Sun, Li
Pehlivan, Necla
Esmaeili, Nardana
Jiang, Weijia
Yang, Xiaojie
Jarrett, Philip
Mishra, Neelam
Zhu, Xunlu
Cai, Yifan
Herath, Maheshika
Shen, Guoxin
Zhang, Hong

Metadata

Show full item record

Citation

Sun, L., Pehlivan, N., Esmaeili, N., Jiang, W., Yang, X., Jarrett, P., Mishra, N., Zhu, X., Cai, Y., Herath, M., Shen, G., & Zhang, H. (2018). Co-overexpression of AVP1 and PP2A-C5 in Arabidopsis makes plants tolerant to multiple abiotic stresses. Plant science : an international journal of experimental plant biology, 274, 271–283. https://doi.org/10.1016/j.plantsci.2018.05.026

Abstract

Abiotic stresses are major threats to agricultural production. Drought and salinity as two of the major abiotic stresses cause billions of losses in agricultural productivity worldwide each year. Thus, it is imperative to make crops more tolerant. Overexpression of AVP1 or PP2A-C5 was previously shown to increase drought and salt stress tolerance, respectively, in transgenic plants. in this study, the hypothesis that co-overexpression of AVP1 and PP2A-C5 would combine their respective benefits and further improve salt tolerance was tested. the two genes were inserted into the same T-DNA region of the binary vector and then introduced into the Arabidopsis genome through Agrobacterium-mediated transformation. Transgenic Arabidopsis plants expressing both AVP1 and PP2A-C5 at relatively high levels were identified and analyzed. These plants displayed enhanced tolerance to NaCl compared to either AVP1 or PP2A-C5 overexpressing plants. They also showed tolerance to other stresses such as KNO3 and LiCl at harmful concentrations, drought, and phosphorus deficiency at comparable levels with either AVP1 or PP2A-C5 overexpressing plants. This study demonstrates that introducing multiple genes in single T-DNA region is an effective approach to create transgenic plants with enhanced tolerance to multiple stresses.

Source

Plant Science

Volume

274

URI

https://doi.org/10.1016/j.plantsci.2018.05.026
https://hdl.handle.net/11436/1775

Collections

  • FEF, Biyoloji Bölümü Koleksiyonu [594]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.